[1] Henini M. Molecular beam epitaxy: from research to mass production. Elsevier, 2012
[2] Wang G, Liu B L, Balocchi A, et al. Gate control of the electron spin-diffusion length in semiconductor quantum wells. Nat Commun, 2013, 4, 2372 doi: 10.1038/ncomms3372
[3] Zhou X Y, Uppu R, Liu Z, et al. On-chip nanomechanical filtering of quantum-dot single-photon sources. Laser Photonics Rev, 2020, 14, 1900404 doi: 10.1002/lpor.201900404
[4] Ghali M, Ohtani K, Ohno Y, et al. Generation and control of polarization-entangled photons from GaAs Island quantum dots by an electric field. Nat Commun, 2012, 3, 661 doi: 10.1038/ncomms1657
[5] Schliemann J. Colloquium: Persistent spin textures in semiconductor nanostructures. Rev Mod Phys, 2017, 89, 011001 doi: 10.1103/RevModPhys.89.011001
[6] Poltavtsev S V, Yugova I A, Kosarev A N, et al. In-plane anisotropy of the hole g factor in CdTe/(Cd, Mg)Te quantum wells studied by spin-dependent photon echoes. Phys Rev Res, 2020, 2, 023160 doi: 10.1103/PhysRevResearch.2.023160
[7] Klenovský P, Baranowski P, Wojnar P. Excitonic fine structure of epitaxial Cd(Se, Te) on ZnTe type-II quantum dots. Phys Rev B, 2022, 105, 195403 doi: 10.1103/PhysRevB.105.195403
[8] Zhukov E A, Yakovlev D R, Glazov M M, et al. Optical control of electron spin coherence in CdTe/(Cd, Mg)Te quantum wells. Phys Rev B, 2010, 81, 235320 doi: 10.1103/PhysRevB.81.235320
[9] Ghali M, Kossut J, Heiss W. Spin injection through different g-factor heterointerfaces using negative trions for spin detection. Appl Phys Lett, 2003, 82, 541 doi: 10.1063/1.1540219
[10] Zhukov E A, Yakovlev D R, Gerbracht M, et al. Spin coherence of holes and electrons in undoped CdTe/(Cd, Mg)Te quantum wells. Phys Rev B, 2009, 79, 155318 doi: 10.1103/PhysRevB.79.155318
[11] Mohanta M K, Is F, Kishore A, et al. Spin-current modulation in hexagonal buckled ZnTe and CdTe monolayers for self-powered flexible-piezo-spintronic devices. ACS Appl Mater Interfaces, 2021, 13, 40872 doi: 10.1021/acsami.1c09267
[12] Lei W, Gu R J, Antoszewski J, et al. GaSb: A new alternative substrate for epitaxial growth of HgCdTe. J Electron Mater, 2014, 43, 2788 doi: 10.1007/s11664-014-3049-x
[13] Lei W, Antoszewski J, Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl Phys Rev, 2015, 2, 041303 doi: 10.1063/1.4936577
[14] Varavin V S, Dvoretskii S A, Mikhailov N N, et al. Molecular beam epitaxy of CdHgTe: Current state and horizons. Optoelectron Instrum Data Process, 2020, 56, 456 doi: 10.3103/S8756699020050143
[15] Passmann F, Anghel S, Tischler T, et al. Persistent spin helix manipulation by optical doping of a CdTe quantum well. Phys Rev B, 2018, 97, 201413 doi: 10.1103/PhysRevB.97.201413
[16] Su P Y, Lee C, Wang G C, et al. CdTe/ZnTe/GaAs heterostructures for single-crystal CdTe solar cells. J Electron Mater, 2014, 43, 2895 doi: 10.1007/s11664-014-3142-1
[17] Alshahrani B, Nabil S, Elsaeedy H I, et al. The pivotal role of thermal annealing of cadmium telluride thin film in optimizing the performance of CdTe/Si solar cells. J Electron Mater, 2021, 50, 4586 doi: 10.1007/s11664-021-08989-3
[18] Suela J, Ribeiro I R B, Ferreira S O, et al. Evolution of crystalline domain size and epitaxial orientation of CdTe/Si(111) quantum dots. J Appl Phys, 2010, 107, 064305 doi: 10.1063/1.3357292
[19] Chaudhari B S, Goto H, Niraula M, et al. Analysis of dislocations and their correlation with dark currents in CdTe/Si heterojunction diode-type X-ray detectors. J Appl Phys, 2021, 130, 055302 doi: 10.1063/5.0058504
[20] Zhang Q, Li Y P, Pagliero D, et al. Controlled growth of (100) or (111) CdTe epitaxial layers on (100) GaAs by molecular beam epitaxy and study of their electron spin relaxation times. J Vac Sci Technol B, 2010, 28, C3D1 doi: 10.1116/1.3336144
[21] Zhao J, Zeng Y P, Liu C, et al. Effects of a ZnTe buffer layer on structural quality and morphology of CdTe epilayer grown on (001) GaAs by molecular beam epitaxy. Vacuum, 2012, 86, 1062 doi: 10.1016/j.vacuum.2011.05.008
[22] Zhu X L, Wu J Q, Hu Q M, et al. Improved growth quality of epitaxial ZnTe thin films on Si (111) wafer with ZnSe buffer layer. J Vac Sci Technol A Vac Surf Films, 2021, 39, 063410 doi: 10.1116/6.0001257
[23] Park K D, Man M T, Cho D Y, et al. Wide-gap photoluminescence control of quantum dots through atomic interdiffusion and bandgap renormalization. Nanophotonics, 2020, 9, 4799 doi: 10.1515/nanoph-2020-0482
[24] Ghosh S, Rodrigues L N, Moura L G, et al. Epitaxial growth and characterization of Cd1–xMnxTe films on Si(1 1 1) substrates. J Cryst Growth, 2019, 522, 25 doi: 10.1016/j.jcrysgro.2019.06.009
[25] Oliveira J M, Malachias A, Ospina C A, et al. Nondestructive monitoring of defect evolution in epitaxial CdTe thin layers grown on Si(111). J Phys Chem C, 2014, 118, 1968 doi: 10.1021/jp409538p
[26] Ferreira S O, Paiva E C, Fontes G N, et al. Characterization of CdTe quantum dots grown on Si(111) by hot wall epitaxy. J Appl Phys, 2003, 93, 1195 doi: 10.1063/1.1530364
[27] Sakaki H, Noda T, Hirakawa K, et al. Interface roughness scattering in GaAs/AlAs quantum wells. Appl Phys Lett, 1987, 51, 1934 doi: 10.1063/1.98305
[28] Yamakawa I, Oga R, Fujiwara Y, et al. Atomic-scale observation of interfacial roughness and As–P exchange in InGaAs/InP multiple quantum wells. Appl Phys Lett, 2004, 84, 4436 doi: 10.1063/1.1758784
[29] Blanks D K, Bicknell R N, Giles-Taylor N C, et al. Strain effects in Cd1–xMnxTe–CdTe superlattices. J Vac Sci Technol A Vac Surf Films, 1986, 4, 2120 doi: 10.1116/1.574040
[30] Nurmikko A V, Hefetz Y, Chang S K, et al. Influence of heterointerfaces on optical properties of CdTe/(Cd, Mn)Te and ZnSe/(Zn, Mn)Se superlattices. J Vac Sci Technol B Microelectron Process Phenom, 1986, 4, 1033 doi: 10.1116/1.583575
[31] Giles-Taylor N C, Bicknell R N, Blanks D K, et al. Photoluminescence of CdTe: A comparison of bulk and epitaxial material. J Vac Sci Technol A Vac Surf Films, 1985, 3, 76 doi: 10.1116/1.573250
[32] Davis C B, Allred D D, Reyes-Mena A, et al. Photoluminescence and absorption studies of defects in CdTe and ZnxCd1-xTe crystals. Phys Rev B Condens Matter, 1993, 47, 13363 doi: 10.1103/PhysRevB.47.13363
[33] Halliday D P, Potter M D G, Mullins J T, et al. Photoluminescence study of a bulk vapour grown CdTe crystal. J Cryst Growth, 2000, 220, 30 doi: 10.1016/S0022-0248(00)00755-7
[34] Xu Z Y, Xu J Z, Ge W K, et al. The excitonic properties and temperature behaviour of the photoluminescence from GaAs-GaAlAs multiple quantum well structures. Solid State Commun, 1987, 61, 707 doi: 10.1016/0038-1098(87)90721-6
[35] Adachi S. Handbook on physical properties of semiconductors. Springer Science & Business Media, 2004
[36] Zhukov A E, Ustinov V M, Egorov A Y, et al. Negative characteristic temperature of InGaAs quantum dot injection laser. Jpn J Appl Phys, 1997, 36, 4216 doi: 10.1143/JJAP.36.4216
[37] Karczewski G, Maćkowski S, Kutrowski M, et al. Photoluminescence study of CdTe/ZnTe self-assembled quantum dots. Appl Phys Lett, 1999, 74, 3011 doi: 10.1063/1.123996
[38] Godlewski M, Narkowicz R, Wojtowicz T, et al. Quasi-zero-dimensional excitons in quantum well structures of CdTe/CdMnTe. J Cryst Growth, 2000, 214/215, 420 doi: 10.1016/S0022-0248(00)00121-4
[39] Lourenço S A, Dias I F L, Duarte J L, et al. Temperature-dependent photoluminescence spectra of GaAsSb/AlGaAs and GaAsSbN/GaAs single quantum wells under different excitation intensities. Braz J Phys, 2007, 37, 1212 doi: 10.1590/S0103-97332007000800004
[40] Mazur Y I, Dorogan V G, Benamara M, et al. Effects of spatial confinement and layer disorder in photoluminescence of GaAs1–xBix/GaAs heterostructures. J Phys D: Appl Phys, 2013, 46, 065306 doi: 10.1088/0022-3727/46/6/065306
[41] Kłopotowski, Nawrocki M, Gaj J A, et al. Tunneling of spin polarized excitons in CdTe based asymmetric double quantum well structure. Solid State Commun, 2001, 119, 147 doi: 10.1016/S0038-1098(01)00230-7
[42] Besombes L, Kheng K, Martrou D. Exciton and biexciton fine structure in single elongated islands grown on a vicinal surface. Phys Rev Lett, 2000, 85, 425 doi: 10.1103/PhysRevLett.85.425
[43] Wei Y M, Zhao T M, Yao B M, et al. Bright and highly-polarized single-photon sources in visible based on droplet-epitaxial GaAs quantum dots in photonic crystal cavities. Opt Mater Express, 2019, 10, 170 doi: 10.1364/OME.379424
[44] Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys, 2015, 87, 347 doi: 10.1103/RevModPhys.87.347
[45] Arakawa Y, Holmes M J. Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. Appl Phys Rev, 2020, 7, 021309 doi: 10.1063/5.0010193
[46] Zhang J X, Wildmann J S, Ding F, et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat Commun, 2015, 6, 10067 doi: 10.1038/ncomms10067