[1] |
Shastri B J, Tait A N, Ferreira de Lima T, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics, 2021, 15, 102 doi: 10.1038/s41566-020-00754-y
|
[2] |
Tian B B, Xie Z Z, Chen L Q, et al. Ultralow-power in-memory computing based on ferroelectric memcapacitor network. Exploration, 2023, 3, 20220126 doi: 10.1002/EXP.20220126
|
[3] |
Schuman C D, Kulkarni S R, Parsa M, et al. Opportunities for neuromorphic computing algorithms and applications. Nat Comput Sci, 2022, 2, 10 doi: 10.1038/s43588-021-00184-y
|
[4] |
Furber S B, Lester D R, Plana L A, et al. Overview of the SpiNNaker system architecture. IEEE Trans Comput, 2013, 62, 2454 doi: 10.1109/TC.2012.142
|
[5] |
Meng J L, Wang T Y, Zhu H, et al. Integrated In-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett, 2022, 22, 81 doi: 10.1021/acs.nanolett.1c03240
|
[6] |
Wang T Y, Meng J L, Zhou X F, et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat Commun, 2022, 13, 7432 doi: 10.1038/s41467-022-35160-1
|
[7] |
Zhang J Y, Dai S L, Zhao Y W, et al. Recent progress in photonic synapses for neuromorphic systems. Adv Intell Syst, 2020, 2, 1900136 doi: 10.1002/aisy.201900136
|
[8] |
Ma F M, Zhu Y B, Xu Z W, et al. Optoelectronic perovskite synapses for neuromorphic computing. Adv Funct Materials, 2020, 30, 1908901 doi: 10.1002/adfm.201908901
|
[9] |
Meng J L, Wang T Y, Chen L, et al. Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy, 2021, 83, 105815 doi: 10.1016/j.nanoen.2021.105815
|
[10] |
Liu Y, Wang T, Xu K, et al. Low-power and high-speed HfLaO-based FE-TFTs for artificial synapse and reconfigurable logic applications. Mater Horiz, 2024, 11, 490 doi: 10.1039/D3MH01461D
|
[11] |
Kwon J Y, Kim J E, Kim J S, et al. Artificial sensory system based on memristive devices. Exploration, 2024, 4, 20220162 doi: 10.1002/EXP.20220162
|
[12] |
Fang Y Q, Meng J L, Li Q X, et al. Two-terminal photoelectric dual modulation synaptic devices for face recognition. IEEE Electron Device Lett, 2023, 44, 241 doi: 10.1109/LED.2022.3228944
|
[13] |
Cheng Y C, Li H, Liu B, et al. Vertical 0D-perovskite/2D-MoS2 van der waals heterojunction phototransistor for emulating photoelectric-synergistically classical Pavlovian conditioning and neural coding dynamics. Small, 2020, 16, 2005217 doi: 10.1002/smll.202005217
|
[14] |
Wang T Y, Meng J L, He Z Y, et al. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv Sci, 2020, 7, 1903480 doi: 10.1002/advs.201903480
|
[15] |
Jeon J H, Gong T K, Kong Y M, et al. Effect of post-deposition annealing on the structural, optical and electrical properties of IGZO films. Electron Mater Lett, 2015, 11, 481 doi: 10.1007/s13391-014-4410-1
|
[16] |
Kumar N, Patel M, Nguyen T T, et al. All-oxide-based and metallic electrode-free artificial synapses for transparent neuromorphic computing. Materials Today Chemistry, 2022, 23, 100681 doi: 10.1016/j.mtchem.2021.100681
|
[17] |
Wang J Y, Leng Y M, Zhao T C, et al. SnO2-based optoelectronic synapses for artificial visual applications. J Phys: Conf Ser, 2023, 2524, 012011 doi: 10.1088/1742-6596/2524/1/012011
|
[18] |
Wang T Y, Meng J L, He Z Y, et al. Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments. Nanoscale Horizons, 2019, 4, 1293 doi: 10.1039/C9NH00341J
|
[19] |
Wang T Y, He Z Y, Chen L, et al. An organic flexible artificial bio-synapses with long-term plasticity for neuromorphic computing. Micromachines, 2018, 9, 239 doi: 10.3390/mi9050239
|
[20] |
Cheng Z G, Ríos C, Pernice W H P, et al. On-chip photonic synapse. Sci Adv, 2017, 3, e1700160 doi: 10.1126/sciadv.1700160
|
[21] |
Li G, Xie D G, Zhong H, et al. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat Commun, 2022, 13, 1729 doi: 10.1038/s41467-022-29456-5
|
[22] |
Pérez-Tomás A. Functional oxides for photoneuromorphic engineering: Toward a solar brain. Adv Materials Inter, 2019, 6, 1900471 doi: 10.1002/admi.201900471
|
[23] |
Wang Y, Yin L, Huang W, et al. Optoelectronic synaptic devices for neuromorphic computing. Adv Intell Syst, 2021, 3, 2000099 doi: 10.1002/aisy.202000099
|
[24] |
Hara Y, Kikuchi T, Kitagawa H, et al. IGZO-TFT technology for large-screen 8K display. J Soc Info Display, 2018, 26, 169 doi: 10.1002/jsid.648
|
[25] |
Kamiya T, Hosono H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater, 2010, 2, 15 doi: 10.1038/asiamat.2010.5
|
[26] |
Hsieh H H, Lu H H, Ting H C, et al. Development of IGZO TFTs and their applications to next-generation flat-panel displays. J Inf Disp, 2010, 11, 160 doi: 10.1080/15980316.2010.9665845
|
[27] |
Zhu Y X, Peng B C, Zhu L, et al. IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity. Appl Phys Lett, 2022, 121, 133502 doi: 10.1063/5.0109772
|
[28] |
Ke S, He Y L, Zhu L Q, et al. Indium-gallium-zinc-oxide based photoelectric neuromorphic transistors for modulable photoexcited corneal nociceptor emulation. Adv Electron Mater, 2021, 7, 2100487 doi: 10.1002/aelm.202100487
|
[29] |
Tran M D, Kim H, Kim J S, et al. Two-terminal multibit optical memory via van der waals heterostructure. Adv Mater, 2019, 31, 1807075 doi: 10.1002/adma.201807075
|
[30] |
Tuchman Y, Mangoma T N, Gkoupidenis P, et al. Organic neuromorphic devices: Past, present, and future challenges. MRS Bull, 2020, 45, 619 doi: 10.1557/mrs.2020.196
|
[31] |
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86, 2278 doi: 10.1109/5.726791
|