Ahlawat S, Mote KR, Lakomek N-A, Agarwal V (2022) Solid-State NMR: methods for biological solids. Chem Rev 122(10): 9643−9737 doi: 10.1021/acs.chemrev.1c00852
|
Baldwin AJ, Walsh P, Hansen DF, Hilton GR, Benesch JLP, Sharpe S, Kay LE (2012) Probing dynamic conformations of the high-molecular-weight αB-crystallin heat shock protein ensemble by NMR spectroscopy. J Am Chem Soc 134(37): 15343−15350 doi: 10.1021/ja307874r
|
Barbet-Massin E, Pell AJ, Retel JS, Andreas LB, Jaudzems K, Franks WT, Nieuwkoop AJ, Hiller M, Higman V, Guerry P, Bertarello A, Knight MJ, Felletti M, Le Marchand T, Kotelovica S, Akopjana I, Tars K, Stoppini M, Bellotti V, Bolognesi M, Ricagno S, Chou JJ, Griffin RG, Oschkinat H, Lesage A, Emsley L, Herrmann T, Pintacuda G (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136(35): 12489−12497 doi: 10.1021/ja507382j
|
Bell D, Lindemann F, Gerland L, Aucharova H, Klein A, Friedrich D, Hiller M, Grohe K, Meier T, van Rossum B, Diehl A, Hughes J, Mueller LJ, Linser R, Miller A-F, Oschkinat H (2024) Sedimentation of large, soluble proteins up to 140 kDa for 1H-detected MAS NMR and 13C DNP NMR – practical aspects. J Biomol NMR. https://doi.org/10.1007/s10858-024-00444-9
|
Bertini I, Engelke F, Gonnelli L, Knott B, Luchinat C, Osen D, Ravera E (2012a) On the use of ultracentrifugal devices for sedimented solute NMR. J Biomol NMR 54(2): 123−127 doi: 10.1007/s10858-012-9657-y
|
Bertini I, Engelke F, Luchinat C, Parigi G, Ravera E, Rosa C, Turano P (2012b) NMR properties of sedimented solutes. Phys Chem Chem Phys 14(2): 439−447 doi: 10.1039/C1CP22978H
|
Bertini I, Gallo G, Korsak M, Luchinat C, Mao JF, Ravera E (2013a) Formation kinetics and structural features of beta-amyloid aggregates by sedimented solute NMR. ChemBioChem 14(14): 1891−1897 doi: 10.1002/cbic.201300141
|
Bertini I, Luchinat C, Parigi G, Ravera E (2013b) SedNMR: on the edge between solution and solid-state NMR. Acc Chem Res 46(9): 2059−2069 doi: 10.1021/ar300342f
|
Bertini I, Luchinat C, Parigi G, Ravera E, Reif B, Turano P (2011) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci USA 108(26): 10396−10399 doi: 10.1073/pnas.1103854108
|
Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45(3): 319−327 doi: 10.1007/s10858-009-9374-3
|
Boudet J, Devillier JC, Wiegand T, Salmon L, Meier BH, Lipps G, Allain FHT (2019) A small helical bundle prepares primer synthesis by binding two nucleotides that enhance sequence-specific recognition of the DNA template. Cell 176(1-2): 154−166 doi: 10.1016/j.cell.2018.11.031
|
Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420(6911): 99−102 doi: 10.1038/nature01070
|
Cole JL, Lary JW, Moody TP, Laue TM (2008) Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods Cell Biol 84: 143−179 doi: 10.1016/S0091-679X(07)84006-4
|
Demers J-P, Fricke P, Shi C, Chevelkov V, Lange A (2018) Structure determination of supra-molecular assemblies by solid-state NMR: practical considerations. Prog Nucl Magn Reson Spectrosc 109: 51−78 doi: 10.1016/j.pnmrs.2018.06.002
|
Fragai M, Luchinat C, Parigi G, Ravera E (2013) Practical considerations over spectral quality in solid state NMR spectroscopy of soluble proteins. J Biomol NMR 57(2): 155−166 doi: 10.1007/s10858-013-9776-0
|
Gardiennet C, Schütz AK, Hunkeler A, Kunert B, Terradot L, Böckmann A, Meier BH (2012) A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. Angew Chem Int Ed Engl 51(31): 7855−7858 doi: 10.1002/anie.201200779
|
Gauto DF, Macek P, Barducci A, Fraga H, Hessel A, Terauchi T, Gajan D, Miyanoiri Y, Boisbouvier J, Lichtenecker R, Kainosho M, Schanda P (2019) Aromatic ring dynamics, thermal activation, and transient conformations of a 468 kDa enzyme by specific 1H–13C labeling and fast magic-angle spinning NMR. J Am Chem Soc 141(28): 11183−11195 doi: 10.1021/jacs.9b04219
|
Gopinath T, Weber D, Wang S, Larsen E, Veglia G (2021) Solid-state NMR of membrane proteins in lipid bilayers: to spin or not to spin? Acc Chem Res 54(6): 1430−1439 doi: 10.1021/acs.accounts.0c00670
|
Klein A, Rovó P, Sakhrani VV, Wang Y, Holmes JB, Liu V, Skowronek P, Kukuk L, Vasa SK, Güntert P, Mueller LJ, Linser R (2022) Atomic-resolution chemical characterization of (2x)72-kDa tryptophan synthase via four- and five-dimensional 1H-detected solid-state NMR. Proc Natl Acad Sci USA 119(4): e2114690119. https://doi.org/10.1073/pnas.2114690119 doi: 10.1073/pnas.2114690119
|
Lacabanne D, Fogeron M-L, Wiegand T, Cadalbert R, Meier BH, Böckmann A (2019) Protein sample preparation for solid-state NMR investigations. Prog Nucl Magn Reson Spectrosc 110: 20−33 doi: 10.1016/j.pnmrs.2019.01.001
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G (2022) 1H-detected biomolecular NMR under fast magic-angle spinning. Chem Rev 122(10): 9943−10018 doi: 10.1021/acs.chemrev.1c00918
|
le Paige UB, Xiang S, Hendrix MMRM, Zhang Y, Folkers GE, Weingarth M, Bonvin AMJJ, Kutateladze TG, Voets IK, Baldus M, van Ingen H (2021) Characterization of nucleosome sediments for protein interaction studies by solid-state NMR spectroscopy. Magn Reson 2(1): 187−202 doi: 10.5194/mr-2-187-2021
|
Luger K, Rechsteiner TJ, Richmond TJ (1999) Preparation of nucleosome core particle from recombinant histones. Chromatin 304: 3−19 doi: 10.1016/S0076-6879(99)04003-3
|
Mainz A, Jehle S, van Rossum BJ, Oschkinat H, Reif B (2009) Large protein complexes with extreme rotational correlation times investigated in solution by magic-angle-spinning NMR spectroscopy. J Am Chem Soc 131(44): 15968−15969 doi: 10.1021/ja904733v
|
Mainz A, Religa TL, Sprangers R, Linser R, Kay LE, Reif B (2013) NMR spectroscopy of soluble protein complexes at one mega-dalton and beyond. Angew Chem Int Ed Engl 52(33): 8746−8751 doi: 10.1002/anie.201301215
|
Mandal A, Boatz JC, Wheeler TB, van der Wel PCA (2017) On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR. J Biomol NMR 67(3): 165−178 doi: 10.1007/s10858-017-0089-6
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A (2022) Ultrafast magic angle spinning solid-state NMR spectroscopy: advances in methodology and applications. Chem Rev 123(3): 918−988
|
Reif B, Ashbrook SE, Emsley L, Hong M (2021) Solid-state NMR spectroscopy. Nat Rev Methods Primers 1: 2. https://doi.org/10.1038/s43586-020-00002-1 doi: 10.1038/s43586-020-00002-1
|
Rothen A (1944) Ferritin and apoferritin in the ultracentrifuge — Studies on the relationship of ferritin and apoferritin; precision measurements of the rates of sedimentation of apoferritin. J Biol Chem 152(3): 679−693 doi: 10.1016/S0021-9258(17)32590-5
|
Sarkar R, Mainz A, Busi B, Barbet-Massin E, Kranz M, Hofmann T, Reif B (2016) Immobilization of soluble protein complexes in MAS solid-state NMR: sedimentation versus viscosity. Solid State Nucl Magn Reson 76-77: 7−14 doi: 10.1016/j.ssnmr.2016.03.005
|
Song F, Chen P, Sun DP, Wang MZ, Dong LP, Liang D, Xu RM, Zhu P, Li GH (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344(6182): 376−380 doi: 10.1126/science.1251413
|
Stanek J, Schubeis T, Paluch P, Güntert P, Andreas LB, Pintacuda G (2020) Automated backbone NMR resonance assignment of large proteins using redundant linking from a single simultaneous acquisition. J Am Chem Soc 142(12): 5793−5799 doi: 10.1021/jacs.0c00251
|
Stöppler D, Macpherson A, Smith-Penzel S, Basse N, Lecomte F, Deboves HA, Taylor RD, Norman T, Porter J, Waters LC, Westwood M, Cossins B, Cain K, White J, Griffin R, Prosser C, Kelm S, Sullivan AH, Fox D, Carr MD, Henry A, Taylor R, Meier BH, Oschkinat H, Lawson AD (2018) Insight into small molecule binding to the neonatal Fc receptor by X-ray crystallography and 100 kHz magic-angle-spinning NMR. PLoS Biol 16(5): e2006192. https://doi.org/10.1371/journal.pbio.2006192 doi: 10.1371/journal.pbio.2006192
|
Torosyan A, Wiegand T, Schledorn M, Klose D, Güntert P, Böckmann A, Meier BH (2019) Including protons in solid-state NMR resonance assignment and secondary structure analysis: the example of RNA polymerase II subunits Rpo4/7. Front Mol Biosci 6: 100. https://doi.org/10.3389/fmolb.2019.00100 doi: 10.3389/fmolb.2019.00100
|
Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Ann Rev Phys Chem 62(1): 279−299 doi: 10.1146/annurev-physchem-032210-103539
|
van Emmerik CL, van Ingen H (2019) Unspinning chromatin: revealing the dynamic nucleosome landscape by NMR. Prog Nucl Magn Reson Spectrosc 110: 1−19 doi: 10.1016/j.pnmrs.2019.01.002
|
Wiegand T, Cadalbert R, Gardiennet C, Timmins J, Terradot L, Böckmann A, Meier BH (2016) Monitoring ssDNA binding to the DnaB helicase from Helicobacter pylori by solid-state NMR spectroscopy. Angew Chemi Int Ed Engl 55(45): 14164−14168 doi: 10.1002/anie.201607295
|
Wiegand T, Cadalbert R, von Schroetter C, Allain FH, Meier BH (2018) Segmental isotope labelling and solid-state NMR of a 12 × 59 kDa motor protein: identification of structural variability. J Biomol NMR 71(4): 237−245 doi: 10.1007/s10858-018-0196-z
|
Xiang SQ, le Paige UB, Horn V, Houben K, Baldus M, van Ingen H (2018) Site-Specific studies of nucleosome interactions by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 57(17): 4571−4575 doi: 10.1002/anie.201713158
|
Zhang T, Li J, Tian CL, Xiang SQ (2023) Rotor loading tool for solid state NMR spectroscopy analysis. China: CN219186971U
|