[1] |
Vallem S, Venkateswarlu S, Li Y, Song S, Li M, Bae J 2024 MXene- and MOF-based single-atom catalysts for next-generation batteries chemistry: a synergy of experimental and theoretical insights Energy Storage Mater. 65 103159 doi: 10.1016/j.ensm.2023.103159
|
[2] |
Zhu C, Cun F, Fan Z, Nie Y, Du Q, Liu F, Yang W, Li A 2023 Heterogeneous Fe-Co dual-atom catalyst outdistances the homogeneous counterpart for peroxymonosulfate-assisted water decontamination: new surface collision oxidation path and diatomic synergy Water Res. 241 120164 doi: 10.1016/j.watres.2023.120164
|
[3] |
Xu W, Cao M, Luo J, Mao H, Gu H, Sun Z, Liu Q, Zhang S 2023 Research progress on single atom and particle synergistic catalysts for electrocatalytic reactions Mater. Chem. Front. 7 1992-2013 doi: 10.1039/D2QM01352E
|
[4] |
Zhong Y, et al 2021 Efficient water splitting system enabled by multifunctional platinumfree electrocatalysts Adv. Funct. Mater. 31 2009853 doi: 10.1002/adfm.202009853
|
[5] |
Takizawa T, et al 2017 Titanium fiber plates for bone tissue repair Adv. Mater. 30 1703608 doi: 10.1002/adma.201703608
|
[6] |
Kim E H, Lee M H, Kim J, Ra E C, Lee J H, Lee J S 2023 Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydrogenation to formic acid Chin. J. Catal. 47 214-21 doi: 10.1016/S1872-2067(22)64202-5
|
[7] |
Jiang D, Wan G, Halldin Stenlid J, García-Vargas C E, Zhang J, Sun C, Li J, Abild-Pedersen F, Tassone C J, Wang Y 2023 Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal Nat. Catal. 6 618-27 doi: 10.1038/s41929-023-00983-8
|
[8] |
Li Y, et al 2023 Single-atom Mn catalysts via integration with Mn sub nano-clusters synergistically enhance oxygen reduction reaction Small 20 e2309727 doi: 10.1002/smll.202309727
|
[9] |
Li H, Wang X, Gong X, Liu C, Ge J, Song P, Xu W 2023 “One stone three birds” of a synergetic effect between Pt single atoms and clusters makes an ideal anode catalyst for fuel cells J. Mater. Chem. A 11 14826-32 doi: 10.1039/D3TA01313H
|
[10] |
Cui X, Liu Y, Wang X, Tian X, Wang Y, Zhang G, Liu T, Ding J, Hu W, Chen Y 2024 Rapid high-temperature liquid shock synthesis of high-entropy alloys for hydrogen evolution reaction ACS Nano 18 2948-57 doi: 10.1021/acsnano.3c07703
|
[11] |
Yang M, Mei J, Ren Y, Cui J, Liang S, Sun S 2023 Long-range electron synergy over Pt1-Co1/CN bimetallic single-atom catalyst in enhancing charge separation for photocatalytic hydrogen production J. Energy Chem. 81 502-9 doi: 10.1016/j.jechem.2023.03.020
|
[12] |
Deng P, et al 2023 Atomic insights into synergistic nitroarene hydrogenation over nanodiamond-supported Pt1-Fe1 dual-single-atom catalyst Angew. Chem., Int. Ed. Engl. 62 e202307853 doi: 10.1002/anie.202307853
|
[13] |
Mahmood J, Li F, Jung S M, Okyay M S, Ahmad I, Kim S J, Park N, Jeong H Y, Baek J B 2017 An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction Nat. Nanotechnol. 12 441-6 doi: 10.1038/nnano.2016.304
|
[14] |
Qiao Z, et al 2019 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity Energy Environ. Sci. 12 2830-41 doi: 10.1039/C9EE01899A
|
[15] |
Yang W, Liu J, Liu M, Zhao Z, Song Y, Tang X, Luo J, Zeng Q, He X 2018 Self-assembly of core-shell structure PtO2@Pt nanodots and their formation evolution Appl. Surf. Sci. 440 841-5 doi: 10.1016/j.apsusc.2018.01.205
|
[16] |
Jeong Y J, Koo W T, Jang J S, Kim D H, Kim M H, Kim I D 2018 Nanoscale PtO2 catalysts-loaded SnO2 multichannel nanofibers toward highly sensitive acetone sensor ACS Appl. Mater. Interfaces 10 2016-25 doi: 10.1021/acsami.7b16258
|
[17] |
Liu M, Tang W, Xie Z, Yu H, Yin H, Xu Y, Zhao S, Zhou S 2017 Design of highly efficient Pt-SnO2 hydrogenation nanocatalysts using Pt@Sn core-shell nanoparticles ACS Catal. 7 1583-91 doi: 10.1021/acscatal.6b03109
|
[18] |
Subbaraman R, Tripkovic D, Chang K C, Strmcnik D, Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic N M 2012 Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts Nat. Mater. 11 550-7 doi: 10.1038/nmat3313
|
[19] |
Shinde S S, Jung J Y, Wagh N K, Lee C H, Kim D-H, Kim S-H, Lee S U, Lee J-H 2021 Ampere-hour-scale zinc-air pouch cells Nat. Energy 6 592-604 doi: 10.1038/s41560-021-00807-8
|
[20] |
Liu C, Carmo M, Bender G, Everwand A, Lickert T, Young J L, Smolinka T, Stolten D, Lehnert W 2018 Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers Electrochem. Commun. 97 96-99 doi: 10.1016/j.elecom.2018.10.021
|
[21] |
Kang Z, et al 2018 Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production Int. J. Hydrog. Energy 43 14618-28 doi: 10.1016/j.ijhydene.2018.05.139
|
[22] |
Millet P, Ngameni R, Grigoriev S A, Mbemba N, Brisset F, Ranjbari A, Etiévant C 2010 PEM water electrolyzers: from electrocatalysis to stack development Int. J. Hydrog. Energy 35 5043-52 doi: 10.1016/j.ijhydene.2009.09.015
|
[23] |
Panchenko O, et al 2018 In-situ two-phase flow investigation of different porous transport layer for a polymer electrolyte membrane (PEM) electrolyzer with neutron spectroscopy J. Power Sources 390 108-15 doi: 10.1016/j.jpowsour.2018.04.044
|
[24] |
Ledezma-Yanez I, Wallace W D Z, Sebastián-Pascual P, Climent V, Feliu J M, Koper M T M 2017 Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes Nat. Energy 2 17031 doi: 10.1038/nenergy.2017.31
|
[25] |
Kang Z, et al 2017 Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells Appl. Energy 206 983-90 doi: 10.1016/j.apenergy.2017.09.004
|
[26] |
Liu L, Chen T, Chen Z 2024 Understanding the dynamic aggregation in single-atom Catalysis Adv. Sci. 11 e2308046 doi: 10.1002/advs.202308046
|
[27] |
Mo F, Zhou Q, Xue W, Liu W, Xu S, Hou Z, Wang J, Wang Q 2023 The optimized catalytic performance of singleatom catalysts by incorporating atomic clusters or nanoparticles: indepth understanding on their synergisms Adv. Energy Mater. 13 2301711 doi: 10.1002/aenm.202301711
|
[28] |
Chen Z, Liu J, Loh K P 2022 Engineering single atom catalysts for flow production: from catalyst design to reactor understandings Acc. Mater. Res. 4 27-41 doi: 10.1021/accountsmr.2c00183
|
[29] |
Li J, et al 2021 Unveiling the nature of Pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions Small 17 e2007245 doi: 10.1002/smll.202007245
|
[30] |
Liu S-F, Li A, Zhang Z-H, D-f L 2017 High-temperature acoustic properties of porous titanium fiber metal materials J. Cent. South Univ. 24 1762-6 doi: 10.1007/s11771-017-3584-8
|
[31] |
Liu S, Qian T, Wang M, Ji H, Shen X, Wang C, Yan C 2021 Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis Nat. Catal. 4 322-31 doi: 10.1038/s41929-021-00599-w
|
[32] |
Liu M, Li J, Chi B, Zheng L, Zhang Y, Zhang Q, Tang T, Zheng L, Liao S 2021 Integration of single Co atoms and Ru nanoclusters boosts the cathodic performance of nitrogen-doped 3D graphene in lithium-oxygen batteries J. Mater. Chem. A 9 10747-57 doi: 10.1039/D1TA00538C
|
[33] |
Yuan S, et al 2019 A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values Nano Energy 59 472-80 doi: 10.1016/j.nanoen.2019.02.062
|
[34] |
Chen Z, et al 2017 Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 8 14548 doi: 10.1038/ncomms14548
|
[35] |
Alloyeau D, Ricolleau C, Mottet C, Oikawa T, Langlois C, Le Bouar Y, Braidy N, Loiseau A 2009 Size and shape effects on the order-disorder phase transition in CoPt nanoparticles Nat. Mater. 8 940-6 doi: 10.1038/nmat2574
|
[36] |
Zhang L, et al 2022 Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation Nano Res. Energy 1 e9120028 doi: 10.26599/NRE.2022.9120028
|
[37] |
Liu Y, et al 2020 A general route to prepare lowrutheniumcontent bimetallic electrocatalysts for pHuniversal hydrogen evolution reaction by using carbon quantum dots Angew. Chem., Int. Ed. 59 1718-26 doi: 10.1002/anie.201913910
|
[38] |
Dai S, You Y, Zhang S, Cai W, Xu M, Xie L, Wu R, Graham G W, Pan X 2017 In situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles Nat. Commun. 8 204 doi: 10.1038/s41467-017-00161-y
|
[39] |
Dai S, Hou Y, Onoue M, Zhang S, Gao W, Yan X, Graham G W, Wu R, Pan X 2017 Revealing surface elemental composition and dynamic processes involved in facet-dependent oxidation of Pt3Co nanoparticles via in situ transmission electron microscopy Nano Lett. 17 4683-8 doi: 10.1021/acs.nanolett.7b01325
|
[40] |
Lin C, Huang Z, Zhang Z, Zeng T, Chen R, Tan Y, Wu W, Mu S, Cheng N 2020 Structurally ordered Pt3Co nanoparticles anchored on N-doped graphene for highly efficient hydrogen evolution reaction ACS Sustainable Chem. Eng 8 16938-45 doi: 10.1021/acssuschemeng.0c06547
|
[41] |
Sievers G W, et al 2020 Self-supported Pt-CoO networks combining high specific activity with high surface area for oxygen reduction Nat. Mater. 20 208-13 doi: 10.1038/s41563-020-0775-8
|
[42] |
Khan M U, et al 2016 Pt3Co octapods as superior catalysts of CO2 hydrogenation Angew. Chem., Int. Ed. 55 9548-52 doi: 10.1002/anie.201602512
|
[43] |
Wang J, Tan H Y, Kuo T R, Lin S C, Hsu C S, Zhu Y, Chu Y C, Chen T L, Lee J F, Chen H M 2021 In situ identifying the dynamic structure behind activity of atomically dispersed platinum catalyst toward hydrogen evolution reaction Small 17 2005713 doi: 10.1002/smll.202005713
|
[44] |
Sun Z, Liu Q, Yao T, Yan W, Wei S 2015 X-ray absorption fine structure spectroscopy in nanomaterials Sci. China Mater. 58 313-41 doi: 10.1007/s40843-015-0043-4
|
[45] |
Tan H, et al 2022 Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction Nat. Commun. 13 2024 doi: 10.1038/s41467-022-29710-w
|