[1] Balents L 2010 Spin liquids in frustrated magnets Nature 464 199 doi: 10.1038/nature08917
[2] Ma Z, et al 2018 Spin-glass ground state in a triangular-lattice compound YbZnGaO4 Phys. Rev. Lett. 120 087201 doi: 10.1103/PhysRevLett.120.087201
[3] Savary L, Balents L 2017 Disorder-induced quantum spin liquid in spin ice pyrochlores Phys. Rev. Lett. 118 087203 doi: 10.1103/PhysRevLett.118.087203
[4] Wen J-J, et al 2017 Disordered route to the coulomb quantum spin liquid: random transverse fields on spin ice in Pr2Zr2O7 Phys. Rev. Lett. 118 107206 doi: 10.1103/PhysRevLett.118.107206
[5] Murayama H, et al 2020 Effect of quenched disorder on the quantum spin liquid state of the triangular-lattice antiferromagnet 1T−TaS2 Phys. Rev. Res. 2 013099 doi: 10.1103/PhysRevResearch.2.013099
[6] Gao Y, Chen G 2020 Some experimental schemes to identify quantum spin liquids Chin. Phys. B 29 097501 doi: 10.1088/1674-1056/ab9df0
[7] Knolle J, Moessner R 2019 A field guide to spin liquids Annu. Rev. Condens. Matter Phys. 10 451-72 doi: 10.1146/annurev-conmatphys-031218-013401
[8] Yamashita M, et al 2010 Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid Science 328 1246-8 doi: 10.1126/science.1188200
[9] Ni J M, et al 2019 Absence of magnetic thermal conductivity in the quantum spin liquid candidate EtMe3Sb[Pd(dmit)2]2 Phys. Rev. Lett. 123 247204 doi: 10.1103/PhysRevLett.123.247204
[10] Saber D, Dexpert-Ghys J, Caro P, Lejus A M, Vivien D 1985 Analysis and simulation of optical and magnetic properties of lanthanide aluminates LnMgAl11O19 (Ln = La/Nd,La/Eu,Pr) with magnetoplumbite-like structure J. Chem. Phys. 82 5648-57 doi: 10.1063/1.448551
[11] Kahn A, et al 1981 Preparation, structure, optical and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19) J. Appl. Phys. 52 6864-9 doi: 10.1063/1.328680
[12] Ashtar M, et al 2019 REZnAl11O19 (RE = Pr, Nd, Sm - Tb): a new family of ideal 2D triangular lattice frustrated magnets J. Mater. Chem. C 7 10073-81 doi: 10.1039/C9TC02643F
[13] Bu H, et al 2022 Gapless triangular-lattice spin-liquid candidate PrZnAl11O19 Phys. Rev. B 106 134428 doi: 10.1103/PhysRevB.106.134428
[14] Li Y 2019 YbMgGaO4: a triangular-lattice quantum spin liquid candidate Adv. Quantum Technol. 2 1900089 doi: 10.1002/qute.201900089
[15] Petíek V, Dušek M, Palatinus L 2014 Crystallographic computing system JANA2006: general features Z. Kristallogr. 229 345-52 doi: 10.1515/zkri-2014-1737
[16] Rodríguez-Carvajal J 1993 Recent advances in magnetic structure determination by neutron powder diffraction Physica B 192 55-69 doi: 10.1016/0921-4526(93)90108-I
[17] See the supplementary materials
[18] Cao Y, Pomjakushin V, Gardner J S, Guo H Data to be published
[19] Scheie A 2021 PyCrystalField: software for calculation, analysis and fitting of crystal electric field Hamiltonians J. Appl. Cryst. 54 356-62 doi: 10.1107/S160057672001554X
[20] Scheie A, Garlea V O, Sanjeewa L D, Xing J, Sefat A S 2020 Crystal-field Hamiltonian and anisotropy in KErSe2 and CsErSe2 Phys. Rev. B 101 144432 doi: 10.1103/PhysRevB.101.144432
[21] Schotte K D, Schotte U 1975 Interpretation of kondo experiments in a magnetic field Phys. Lett. A 55 38-40 doi: 10.1016/0375-9601(75)90386-2
[22] Bredl C D, Steglich F, Schotte K D 1978 Specific heat of concentrated kondo systems: (La, Ce)Al2 and CeAl2 Z. Phys. B 29 327-40 doi: 10.1007/BF01324030
[23] Gopal E 1966 Sepcific Heats at Low TemperaturesPlenum Press
[24] Furukawa T, et al 2015 Quantum spin liquid emerging from antiferromagnetic order by introducing disorder Phys. Rev. Lett. 115 077001 doi: 10.1103/PhysRevLett.115.077001
[25] Kimchi I, Nahum A, Senthil T 2018 Valence bonds in random quantum magnets: theory and application to YbMgGaO4 Phys. Rev. X 8 031028 doi: 10.1103/PhysRevX.8.031028
[26] Li Y, et al 2019 Rearrangement of uncorrelated valence bonds evidenced by low-energy spin excitations in YbMgGaO4 Phys. Rev. Lett. 122 137201 doi: 10.1103/PhysRevLett.122.137201
[27] Wu H-Q, Gong S-S, Sheng D N 2019 Randomness-induced spin-liquid-like phase in the spin-12J1−J2 triangular heisenberg model Phys. Rev. B 99 085141 doi: 10.1103/PhysRevB.99.085141
[28] Ma Z, et al 2021 Disorder-induced broadening of the spin waves in the triangular-lattice quantum spin liquid candidate YbZnGaO4 Phys. Rev. B 104 224433 doi: 10.1103/PhysRevB.104.224433
[29] Li Y, Gegenwart P, Tsirlin A A 2020 Spin liquids in geometrically perfect triangular antiferromagnets J. Phys.: Condens. Matter 32 224004 doi: 10.1088/1361-648X/ab724e
[30] Hodges J A, et al 2002 First-order transition in the spin dynamics of geometrically frustrated Yb2Ti2O7 Phys. Rev. Lett. 88 077204 doi: 10.1103/PhysRevLett.88.077204
[31] Yaouanc A, Dalmas de Réotier P, Marin C, Glazkov V 2011 Single-crystal versus polycrystalline samples of magnetically frustrated Yb2Ti2O7: specific heat results Phys. Rev. B 84 172408 doi: 10.1103/PhysRevB.84.172408
[32] Ross K A, et al 2012 Lightly stuffed pyrochlore structure of single-crystalline Yb2Ti2O7 grown by the optical floating zone technique Phys. Rev. B 86 174424 doi: 10.1103/PhysRevB.86.174424
[33] Wannier G H 1950 Antiferromagnetism. The triangular ising net Phys. Rev. 79 357-64 doi: 10.1103/PhysRev.79.357
[34] Shen Y, et al 2019 Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4 Nat. Commun. 10 4530 doi: 10.1038/s41467-019-12410-3
[35] Li Y, et al 2020 Partial up-up-down order with the continuously distributed order parameter in the triangular antiferromagnet TmMgGaO4 Phys. Rev. X 10 011007 doi: 10.1103/PhysRevX.10.011007
[36] Li H, et al 2020 Kosterlitz-thouless melting of magnetic order in the triangular quantum ising material TmMgGaO4 Nat. Commun. 11 1111 doi: 10.1038/s41467-020-14907-8
[37] Arh T, et al 2022 The Ising triangular-lattice antiferromagnet neodymium heptatantalate as a quantum spin liquid candidate Nat. Mater. 21 416-22 doi: 10.1038/s41563-021-01169-y
[38] Ma Z, et al 2024 Possible gapless quantum spin liquid behavior in the triangular-lattice ising antiferromagnet PrMgAl11O19 Phys. Rev. B 109 165143 doi: 10.1103/PhysRevB.109.165143
[39] Gardner J S, Gingras M J P, Greedan J E 2010 Magnetic pyrochlore oxides Rev. Mod. Phys. 82 53-107 doi: 10.1103/RevModPhys.82.53