[1] Sonigara K K, Zhao J, Machhi H K, Cui G, Soni S S 2020 Self-assembled solid-state gel catholyte combating iodide diffusion and self-discharge for a stable flexible aqueous Zn-I2 battery Adv. Energy Mater. 10 2001997 doi: 10.1002/aenm.202001997
[2] Guo Q, Wang H, Sun X, Yang Y, Chen N, Qu L 2022 In situ synthesis of cathode materials for aqueous high-rate and durable Zn-I2 batteries ACS Mater. Lett. 4 1872 doi: 10.1021/acsmaterialslett.2c00608
[3] Zou Y, Liu T, Du Q, Li Y, Yi H, Zhou X, Li Z, Gao L, Zhang L, Liang X 2021 A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion Nat. Commun. 12 170 doi: 10.1038/s41467-020-20331-9
[4] Wang F, Tseng J, Liu Z, Zhang P, Wang G, Chen G, Wu W, Yu M, Wu Y, Feng X 2020 A stimulus-responsive zinc-iodine battery with smart overcharge self-protection function Adv. Mater. 32 2000287 doi: 10.1002/adma.202000287
[5] Yang H, Qiao Y, Chang Z, Deng H, He P, Zhou H 2020 A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries Adv. Mater. 32 2004240 doi: 10.1002/adma.202004240
[6] Shin J, Lee J, Park Y, Choi J W 2020 Aqueous zinc ion batteries: focus on zinc metal anodes Chem. Sci. 11 2028 doi: 10.1039/D0SC00022A
[7] Yang X, Zhang Z, Wu M, Guo Z-P, Zheng Z-J 2023 Reshaping zinc plating/stripping behavior by interfacial water bonding for high-utilization-rate zinc batteries Adv. Mater. 35 2303550 doi: 10.1002/adma.202303550
[8] Naveed A, Rasheed T, Raza B, Chen J, Yang J, Yanna N, Wang J 2022 Addressing thermodynamic instability of Zn anode: classical and recent advancements Energy Storage Mater. 44 206 doi: 10.1016/j.ensm.2021.10.005
[9] Liang P, Yi J, Liu X, Wu K, Wang Z, Cui J, Liu Y, Wang Y, Xia Y, Zhang J 2020 Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries Adv. Funct. Mater. 30 1908528 doi: 10.1002/adfm.201908528
[10] Wang W, Chen S, Liao X, Huang R, Wang F, Chen J, Wang F, Wang H, Wang Y 2023 Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries Nat. Commun. 14 5443 doi: 10.1038/s41467-023-41276-9
[11] Naveed A, Ali A, Rasheed T, Wang X, Ye P, Li X, Zhou Y, Mingru S, Liu Y 2022 Revisiting recent and traditional strategies for surface protection of Zn metal anode J. Power Sources 525 231122 doi: 10.1016/j.jpowsour.2022.231122
[12] Xie C, Liu Y, Lu W, Zhang H, Li X 2019 Highly stable zinc-iodine single flow batteries with super high energy density for stationary energy storage Energy Environ. Sci. 12 1834 doi: 10.1039/C8EE02825G
[13] Tang B, Shan L, Liang S, Zhou J 2019 Issues and opportunities facing aqueous zinc-ion batteries Energy Environ. Sci. 12 3288 doi: 10.1039/C9EE02526J
[14] Han D, et al 2020 A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems Small 16 2001736 doi: 10.1002/smll.202001736
[15] Zhao K, Wang C, Yu Y, Yan M, Wei Q, He P, Dong Y, Zhang Z, Wang X, Mai L 2018 Ultrathin surface coating enables stabilized zinc metal anode Adv. Mater. Interfaces 5 1800848 doi: 10.1002/admi.201800848
[16] Mathew V, Schorr N B, Sambandam B, Lambert T N, Kim J 2023 A critical comparison of mildly acidic versus alkaline zinc batteries Acc. Mater. Res. 4 299 doi: 10.1021/accountsmr.2c00221
[17] Quartarone E, Mustarelli P 2011 Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives Chem. Soc. Rev. 40 2525 doi: 10.1039/c0cs00081g
[18] Manthiram A, Yu X, Wang S 2017 Lithium battery chemistries enabled by solid-state electrolytes Nat. Rev. Mater. 2 16103 doi: 10.1038/natrevmats.2016.103
[19] Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R 2016 High-power all-solid-state batteries using sulfide superionic conductors Nat. Energy 1 16030 doi: 10.1038/nenergy.2016.30
[20] Liu Q, Liu R, He C, Xia C, Guo W, Xu Z-L, Xia B Y 2022 Advanced polymer-based electrolytes in zinc-air batteries eScience 2 453 doi: 10.1016/j.esci.2022.08.004
[21] Xie K, Ren K, Wang Q, Lin Y, Ma F, Sun C, Li Y, Zhao X, Lai C 2023 In situ construction of zinc-rich polymeric solid-electrolyte interface for high-performance zinc anode eScience 3 100153 doi: 10.1016/j.esci.2023.100153
[22] Ferguson C J, Hughes R J, Nguyen D, Pham B T T, Gilbert R G, Serelis A K, Such C H, Hawkett B S 2005 Ab initio emulsion polymerization by RAFT-controlled self-assembly Macromolecules 38 2191 doi: 10.1021/ma048787r
[23] Zhang C, et al 2017 PFPE-based polymeric 19F MRI agents: a new class of contrast agents with outstanding sensitivity Macromolecules 50 5953 doi: 10.1021/acs.macromol.7b01285
[24] Wang X, et al 2022 Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes Nat. Mater. 21 1057 doi: 10.1038/s41563-022-01296-0
[25] Dueramae I, Okhawilai M, Kasemsiri P, Uyama H 2021 High electrochemical and mechanical performance of zinc conducting-based gel polymer electrolytes Sci. Rep. 11 13268 doi: 10.1038/s41598-021-92671-5
[26] Li Y, Wang Z, Li W, Zhang X, Yin C, Li W, Guo K, Zhang X, Wu J 2023 Trinary nanogradients at electrode/electrolyte interface for lean zinc metal batteries Energy Storage Mater. 61 102873 doi: 10.1016/j.ensm.2023.102873
[27] Saal A, Hagemann T, Schubert U S 2021 Polymers for battery applications—active materials, membranes, and binders Adv. Energy Mater. 11 2001984 doi: 10.1002/aenm.202001984
[28] Stolwijk N A, Heddier C, Reschke M, Wiencierz M, Bokeloh J, Wilde G 2013 Salt-concentration dependence of the glass transition temperature in PEO-NaI and PEO-LiTFSI polymer electrolytes Macromolecules 46 8580 doi: 10.1021/ma401686r
[29] Zhu Y, Yang G, Zhou H 2022 An aqueous zinc-ion battery working at -50 °C enabled by low-concentration perchlorate-based chaotropic salt electrolyte EcoMat 4 e12165 doi: 10.1002/eom2.12165
[30] Bard A J, Inzelt G, Scholz F 2008 (eds)E BT Electrochemical DictionarySpringer 175-264
[31] Huo S, Sheng L, Xue W, Wang L, Xu H, Zhang H, He X 2023 Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries InfoMat 5 e12394 doi: 10.1002/inf2.12394
[32] Tian H, et al 2022 Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes Nat. Commun. 13 7922 doi: 10.1038/s41467-022-35618-2
[33] Shang W, et al 2021 Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes ACS Appl. Mater. Interfaces 13 24756 doi: 10.1021/acsami.1c03804
[34] Yuan L, Hao J, Johannessen B, Ye C, Yang F, Wu C, Dou S, Liu H, Qiao S 2023 Hybrid working mechanism enables highly reversible Zn electrodes eScience 3 100096 doi: 10.1016/j.esci.2023.100096
[35] Hou Z, Zhang B 2022 A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries EcoMat 4 e12265 doi: 10.1002/eom2.12265
[36] Pei A, Zheng G, Shi F, Li Y, Cui Y 2017 Nanoscale nucleation and growth of electrodeposited lithium metal Nano Lett. 17 1132 doi: 10.1021/acs.nanolett.6b04755
[37] Wu X, Dai Y, Li N W, Chen X C, Yu L 2024 Recent progress in ionic liquid-based electrolytes for nonaqueous and aqueous metal batteries eScience 4 100173 doi: 10.1016/j.esci.2023.100173
[38] Wang Y, Wu Z, Azad F M, Zhu Y, Wang L, Hawker C J, Whittaker A K, Forsyth M, Zhang C 2024 Fluorination in advanced battery design Nat. Rev. Mater. 9 119 doi: 10.1038/s41578-023-00623-4
[39] Yang Y, Liu C, Lv Z, Yang Y, Zhang H, Ye M, Chen L, Zhao J, Li C C 2021 Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free zn metal anodes Adv. Mater. 33 2007388 doi: 10.1002/adma.202007388
[40] Zeng Y, et al 2023 Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches Nat. Commun. 14 3229 doi: 10.1038/s41467-023-38823-9
[41] Yang J, et al 2023 Hetero-polyionic hydrogels enable dendrites-free aqueous Zn-I2 batteries with fast kinetics Adv. Mater. 35 2306531 doi: 10.1002/adma.202306531
[42] Wang M, Ma J, Zhang H, Fu L, Li X, Lu K Bidirectional confined redox catalysis manipulated quasi-solid iodine conversion for shuttle-free solid-state Zn-I2 battery Small 2023 2307021 doi: 10.1002/smll.202307021
[43] Machhi H K, Sonigara K K, Bariya S N, Soni H P, Soni S S 2021 Hierarchically porous metal-organic gel hosting catholyte for limiting iodine diffusion and self-discharge control in sustainable aqueous Zinc-I2 batteries ACS Appl. Mater. Interfaces 13 21426 doi: 10.1021/acsami.1c03812
[44] Zhang S, Hao J, Li H, Zhang P, Yin Z, Li Y, Zhang B, Lin Z, Qiao S 2022 Polyiodide confinement by starch enables shuttle-free zn-iodine batteries Adv. Mater. 34 2201716 doi: 10.1002/adma.202201716
[45] Yang J, Liu H, Zhao X, Zhang K, Zhang X, Ma M, Gu Z, Cao J, Wu X 2024 Janus binder chemistry for synchronous enhancement of iodine species adsorption and redox kinetics toward sustainable aqueous Zn-I2 batteries J. Am. Chem. Soc. 146 6628 doi: 10.1021/jacs.3c12638
[46] Ma L, Ying Y, Chen S, Huang Z, Li X, Huang H, Zhi C 2021 Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities Angew. Chem., Int. Ed. 60 3791 doi: 10.1002/anie.202014447
[47] Ghica D, Vlaicu I D, Stefan M, Maraloiu V A, Joita A C, Ghica C 2019 Tailoring the dopant distribution in zno: mn nanocrystals Sci. Rep. 9 6894 doi: 10.1038/s41598-019-43388-z
[48] Hou Z, Zhang T, Liu X, Xu Z, Liu J, Zhou W, Qian Y, Fan H J, Chao D, Zhao D 2023 A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries Sci. Adv. 8 eabp8960 doi: 10.1126/sciadv.abp8960
[49] Meng C, He W, Tan H, Wu X, Liu H, Wang J 2023 A eutectic electrolyte for an ultralong-lived Zn//V2O5 cell: an in situ generated gradient solid-electrolyte interphase Energy Environ. Sci. 16 3587 doi: 10.1039/D3EE01447A
[50] An Y, Tian Y, Zhang K, Liu Y, Liu C, Xiong S, Feng J, Qian Y 2021 Stable aqueous anode-free zinc batteries enabled by interfacial engineering Adv. Funct. Mater. 31 2101886 doi: 10.1002/adfm.202101886
[51] Tao S, et al 2022 A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes Chem. Eng. J. 446 136607 doi: 10.1016/j.cej.2022.136607
[52] Cao L, et al 2021 Fluorinated interphase enables reversible aqueous zinc battery chemistries Nat. Nanotechnol. 16 902 doi: 10.1038/s41565-021-00905-4
[53] Ma L, Li Q, Ying Y, Ma F, Chen S, Li Y, Huang H, Zhi C 2021 Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes Adv. Mater. 33 2007406 doi: 10.1002/adma.202007406
[54] Han D, et al 2022 A non-flammable hydrous organic electrolyte for sustainable zinc batteries Nat. Sustain. 5 205 doi: 10.1038/s41893-021-00800-9