[1] Iandolo R, Marini F, Semprini M, Laffranchi M, Mugnosso M, Cherif A, De Michieli L, Chiappalone M, Zenzeri J 2019 Perspectives and challenges in robotic neurorehabilitation Appl. Sci. 9 3183 doi: 10.3390/app9153183
[2] Brambilla C, Pirovano I, Mira R M, Rizzo G, Scano A, Mastropietro A 2021 combined use of EMG and EEG techniques for neuromotor assessment in rehabilitative applications: a systematic review Sensors 21 7014 doi: 10.3390/s21217014
[3] Fu Y, Zhao J, Dong Y, Wang X 2020 Dry electrodes for human bioelectrical signal monitoring Sensors 20 3651 doi: 10.3390/s20133651
[4] Liu Q, Yang L, Zhang Z, Yang H, Zhang Y, Wu J 2023 The feature, performance, and prospect of advanced electrodes for electroencephalogram Biosensors 13 101 doi: 10.3390/bios13010101
[5] Hsieh J-C, Li Y, Wang H, Perz M, Tang Q, Tang K W K, Pyatnitskiy I, Reyes R, Ding H, Wang H 2022 Design of hydrogel-based wearable EEG electrodes for medical applications J. Mater. Chem. B 10 7260-80 doi: 10.1039/D2TB00618A
[6] Zhang Y, Xu Z, Li M, Yuan Y, Wang W, Zhang L, Wan P 2024 Mussel-inspired self-healing adhesive MXene hydrogel for epidermal electronics Device 2 100253 doi: 10.1016/j.device.2023.100253
[7] Liang Q, Xia X, Sun X, Yu D, Huang X, Han G, Mugo S M, Chen W, Zhang Q 2022 Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain neural signals Adv. Sci. 9 e2201059 doi: 10.1002/advs.202201059
[8] Panzer M J 2022 Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels Mater. Adv. 3 7709-25 doi: 10.1039/D2MA00539E
[9] Fan X, et al 2023 Ionogels: recent advances in design, material properties and emerging biomedical applications Chem. Soc. Rev. 52 2497-527 doi: 10.1039/D2CS00652A
[10] El Achkar T, Greige-Gerges H, Fourmentin S 2021 Basics and properties of deep eutectic solvents: a review Environ. Chem. Lett. 19 3397-408 doi: 10.1007/s10311-021-01225-8
[11] Zhao H, et al 2024 Stretchable multichannel ionotronic electrodes for in situ dualmodal monitoring of muscle-vascular activity Adv. Funct. Mater. 34 2308686 doi: 10.1002/adfm.202308686
[12] Aguzin A, Dominguez-Alfaro A, Criado-Gonzalez M, Velasco-Bosom S, Picchio M L, Casado N, Mitoudi-Vagourdi E, Minari R J, Malliaras G G, Mecerreyes D 2023 Direct ink writing of PEDOT eutectogels as substrate-free dry electrodes for electromyography Mater. Horiz. 10 2516-24 doi: 10.1039/D3MH00310H
[13] Wang S, Cheng H, Yao B, He H, Zhang L, Yue S, Wang Z, Ouyang J 2021 Self-adhesive, stretchable, biocompatible, and conductive nonvolatile eutectogels as wearable conformal strain and pressure sensors and biopotential electrodes for precise health monitoring ACS Appl. Mater. Interfaces 13 20735-45 doi: 10.1021/acsami.1c04671
[14] Cheng L, Li J, Guo A, Zhang J 2023 Recent advances in flexible noninvasive electrodes for surface electromyography acquisition npj Flex. Electron. 7 1-26 doi: 10.1038/s41528-023-00273-0
[15] Rodrigues M S, Fiedler P, Küchler N, Domingues R P, Lopes C, Borges J, Haueisen J, Vaz F 2020 Dry electrodes for surface electromyography based on architectured titanium thin films Materials 13 2135 doi: 10.3390/ma13092135
[16] Shahandashti P F, Pourkheyrollah H, Jahanshahi A, Ghafoorifard H 2019 Highly conformable stretchable dry electrodes based on inexpensive flex substrate for long-term biopotential (EMG/ECG) monitoring Sens. Actuators A 295 678-86 doi: 10.1016/j.sna.2019.06.041
[17] Chen K, Ren L, Chen Z, Pan C, Zhou W, Jiang L 2016 Fabrication of micro-needle electrodes for bio-signal recording by a magnetization-induced self-assembly method Sensors 16 1533 doi: 10.3390/s16091533
[18] Zhang L, et al 2020 Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring Nat. Commun. 11 4683 doi: 10.1038/s41467-020-18503-8
[19] Yang L, Liu Q, Zhang Z, Gan L, Zhang Y, Wu J 2022 Materials for dry electrodes for the electroencephalography: advances, challenges, perspectives Adv. Mater. Technol. 7 2100612 doi: 10.1002/admt.202100612
[20] Pedrosa P, Fiedler P, Schinaia L, Vasconcelos B, Martins A C, Amaral M H, Comani S, Haueisen J, Fonseca C 2017 Alginate-based hydrogels as an alternative to electrolytic gels for rapid EEG monitoring and easy cleaning procedures Sens. Actuators B 247 273-83 doi: 10.1016/j.snb.2017.02.164
[21] Song Y, Li P, Li M, Li H, Li C, Sun D, Yang B 2017 Fabrication of chitosan/Au-TiO2 nanotube-based dry electrodes for electroencephalography recording Mater. Sci. Eng. C 79 740-7 doi: 10.1016/j.msec.2017.05.114
[22] Ma R, Kim D-H, McCormick M, Coleman T, Rogers J 2010 A stretchable electrode array for non-invasive, skin-mounted measurement of electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG) 2010 Annual Int. Conf. IEEE Engineering in Medicine and Biology(IEEE) 6405-8
[23] Yang S, et al 2023 Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention Nat. Commun. 14 6494 doi: 10.1038/s41467-023-42149-x
[24] Lee S M, Byeon H J, Lee J H, Baek D H, Lee K H, Hong J S, Lee S-H 2014 Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals Sci. Rep. 4 6074 doi: 10.1038/srep06074
[25] Bishop L, et al 2017 In vivo toxicity assessment of occupational components of the carbon nanotube life cycle to provide context to potential health effects ACS Nano 11 8849-63 doi: 10.1021/acsnano.7b03038
[26] Ding H, Gu Y, Ren Y, Hu C, Qiu Q, Wu D, Mou J, Wu Z, Zhou H 2024 The latest research progress of conductive hydrogels in the field of electrophysiological signal acquisition J. Mater. Chem. 12 3030-52 doi: 10.1039/d4tc00089g
[27] Fiedler P, Brodkorb S, Fonseca C, Haueisen J 2009 Novel TiN-based dry EEG electrodes: influence of electrode shape and number on contact impedance and signal quality 12th Mediterranean Conf. on Medical and Biological Engineering and Computing 2010vol 29 418-21
[28] Pan L, et al 2020 A compliant ionic adhesive electrode with ultralow bioelectronic impedance Adv. Mater. 32 e2003723 doi: 10.1002/adma.202003723
[29] de Lacalle J L, Picchio M L, Dominguez-Alfaro A, Serrano R R-M, Marchiori B, Agua I D, Lopez-Larrea N, Criado-Gonzalez M, Malliaras G G, Mecerreyes D 2023 Hydrophobic eutectogels as electrodes for underwater electromyography recording ACS Mater. Lett. 5 3340-6 doi: 10.1021/acsmaterialslett.3c00938
[30] Leleux P, Johnson C, Strakosas X, Rivnay J, Hervé T, Owens R M, Malliaras G G 2014 Ionic liquid gel-assisted electrodes for long-term cutaneous recordings Adv. Healthcare Mater. 3 1377-80 doi: 10.1002/adhm.201300614
[31] Gomes J M, Silva S S, Reis R L 2019 Biocompatible ionic liquids: fundamental behaviours and applications Chem. Soc. Rev. 48 4317-35 doi: 10.1039/C9CS00016J
[32] Potka-Wasylka J, de la Guardia M, Andruch V, Vilková M 2020 Deep eutectic solvents vs ionic liquids: similarities and differences Microchem. J. 159 105539 doi: 10.1016/j.microc.2020.105539
[33] Serrano R R-M, VelascoBosom S, DominguezAlfaro A, Picchio M L, Mantione D, Mecerreyes D, Malliaras G G 2023 High density body surface potential mapping with conducting polymer-eutectogel electrode arrays for ECG imaging Adv. Sci. e2301176 doi: 10.1002/advs.202301176
[34] Pan Y, Cui X, Song D, Hu W, Lin X, Liu N 2024 A stretchable and sweat-adhesive 3D graphene eutectogel electrode for EMG monitoring ACS Appl. Nano Mater. 7 12064-71 doi: 10.1021/acsanm.4c01676
[35] Cao J, Su E 2021 Hydrophobic deep eutectic solvents: the new generation of green solvents for diversified and colorful applications in green chemistry J. Clean Prod. 314 127965 doi: 10.1016/j.jclepro.2021.127965
[36] Chai C, Ma L, Chu Y, Li W, Qian Y, Hao J 2023 Extreme-environment-adapted eutectogel mediated by heterostructure for epidermic sensor and underwater communication J. Colloid Interface Sci. 638 439-48 doi: 10.1016/j.jcis.2023.01.147
[37] Ren Y, Guo J, Liu Z, Sun Z, Wu Y, Liu L, Yan F 2019 Ionic liquid-based click-ionogels Science Adv. 5 eaax0648 doi: 10.1126/sciadv.aax0648
[38] Wang M, Zhang P, Shamsi M, Thelen J L, Qian W, Truong V K, Ma J, Hu J, Dickey M D 2022 Tough and stretchable ionogels by in situ phase separation Nat. Mater. 21 359-65 doi: 10.1038/s41563-022-01195-4
[39] Zhang J, Yin J, Li N, Liu H, Wu Z, Liu Y, Jiao T, Qin Z 2022 Simultaneously enhancing the mechanical strength and ionic conductivity of stretchable ionogels enabled by polymerization-induced phase separation Macromolecules 55 10950-9 doi: 10.1021/acs.macromol.2c01838
[40] Cheng Y, Zhu H, Li S, Xu M, Li T, Yang X, Song H 2023 Stretchable, low-hysteresis, and recyclable ionogel by ionic liquid catalyst and mixed ionic liquid-induced phase separation ACS Sustain. Chem. Eng. 11 15031-42 doi: 10.1021/acssuschemeng.3c03791
[41] Zhao B, Yan J, Long F, Qiu W, Meng G, Zeng Z, Huang H, Wang H, Lin N, Liu X-Y 2023 Bioinspired conductive enhanced polyurethane ionic skin as reliable multifunctional sensors Adv. Sci. 10 e2300857 doi: 10.1002/advs.202300857
[42] Ye H, Wu B, Sun S, Wu P 2024 Self-compliant ionic skin by leveraging hierarchical hydrogen bond association Nat. Commun. 15 885 doi: 10.1038/s41467-024-45079-4
[43] Gao Y, Zhou J, Xu F, Huang W, Ma X, Dou Q, Fang Y, Wu L 2023 Highly stretchable, selfhealable and selfadhesive doublenetwork eutectogel based on gellan gum and polymerizable deep eutectic solvent for strain sensing ChemistrySelect 8 e20220446 doi: 10.1002/slct.202204463
[44] Kaveh R, Tetreault N, Gopalan K, Maravilla J, Lustig M, Muller R, Arias A C 2022 Rapid and scalable fabrication of low impedance, 3D dry electrodes for physiological sensing Adv. Mater. Technol. 7 2200342 doi: 10.1002/admt.202200342
[45] Gao K-P, Yang H-J, Wang X-L, Yang B, Liu J-Q 2018 Soft pin-shaped dry electrode with bristles for EEG signal measurements Sens. Actuators A 283 348-61 doi: 10.1016/j.sna.2018.09.045
[46] Han Q, et al 2023 Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation Adv. Mater. 35 e2209606 doi: 10.1002/adma.202209606
[47] Yang H, Li C, Tang J 2022 Soft elastomer coatings for ionogels Extrem. Mech. Lett. 54 101761 doi: 10.1016/j.eml.2022.101761