Agani FH, Puchowicz M, Chavez JC, Pichiule P, LaManna J (2002) Role of nitric oxide in the regulation of HIF-1alpha expression during hypoxia. Am J Physiol Cell Physiol 283(1): C178−C186 doi: 10.1152/ajpcell.00381.2001
Alig SK, Stampnik Y, Pircher J, Rotter R, Gaitzsch E, Ribeiro A, Wornle M, Krotz F, Mannell H (2015) The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1alpha (HIF-1alpha) protein levels in endothelial cells under hypoxia. PLoS One 10(3): e0121113. https://doi.org/10.1371/journal.pone.0121113 doi: 10.1371/journal.pone.0121113
Arora D, Jain P, Singh N, Kaur H, Bhatla SC (2016) Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic Res 50(3): 291−303 doi: 10.3109/10715762.2015.1118473
Ball KA, Nelson AW, Foster DG, Poyton RO (2012) Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1alpha in hypoxic mammalian cells. Biochem Biophys Res Commun 420(4): 727−732 doi: 10.1016/j.bbrc.2012.03.050
Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87(4): 1620−1624 doi: 10.1073/pnas.87.4.1620
Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J (2007) Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem 282(3): 1788−1796 doi: 10.1074/jbc.M607065200
Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294(5545): 1337−1340 doi: 10.1126/science.1066373
Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1(6): 409−414 doi: 10.1016/j.cmet.2005.05.002
Buettner GR (1993) The spin trapping of superoxide and hydroxyl free radicals with DMPO (5,5-dimethylpyrroline-N-oxide): more about iron. Free Radic Res Commun 19 Suppl 1(1): S79–S87. https://doi.org/10.3109/10715769309056s79
Callapina M, Zhou J, Schnitzer S, Metzen E, Lohr C, Deitmer JW, Brune B (2005) Nitric oxide reverses desferrioxamine- and hypoxia-evoked HIF-1alpha accumulation--implications for prolyl hydroxylase activity and iron. Exp Cell Res 306(1): 274−284 doi: 10.1016/j.yexcr.2005.02.018
Chandel NS, Budinger GR (2007) The cellular basis for diverse responses to oxygen. Free Radic Biol Med 42(2): 165−174 doi: 10.1016/j.freeradbiomed.2006.10.048
Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95(20): 11715−11720 doi: 10.1073/pnas.95.20.11715
Fung ML, Li M, Lahiri S (2007) Increased endogenous nitric oxide release by iron chelation and purinergic activation in the rat carotid body. Open Biochem J 1: 1−6. http://doi.org/10.2174/1874091X00701010001
Galanis A, Pappa A, Giannakakis A, Lanitis E, Dangaj D, Sandaltzopoulos R (2008) Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett 266(1): 12−20 doi: 10.1016/j.canlet.2008.02.028
Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297(5584): 1186−1190 doi: 10.1126/science.1073634
Guo G, Bhat NR (2006) Hypoxia/reoxygenation differentially modulates NF-kappaB activation and iNOS expression in astrocytes and microglia. Antioxid Redox Signal 8(5−6): 911−918 doi: 10.1089/ars.2006.8.911
Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1(6): 401−408 doi: 10.1016/j.cmet.2005.05.001
Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302(5652): 1975−1978 doi: 10.1126/science.1088805
Hsiao G, Lee JJ, Chen YC, Lin JH, Shen MY, Lin KH, Chou DS, Sheu JR (2007) Neuroprotective effects of PMC, a potent alpha-tocopherol derivative, in brain ischemia-reperfusion: reduced neutrophil activation and anti-oxidant actions. Biochem Pharmacol 73(5): 682−693 doi: 10.1016/j.bcp.2006.11.009
Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL (2014) Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci 21(1): 3. https://doi.org/10.1186/1423-0127-21-3 doi: 10.1186/1423-0127-21-3
Hua Q, Zhu X, Li P, Tang H, Cai D, Xu Y, Jia X, Chen J, Shen Y (2008) Refined Qing Kai Ling, traditional Chinese medicinal preparation, reduces ischemic stroke-induced infarct size and neurological deficits and increases expression of endothelial nitric oxide synthase. Biol Pharm Bull 31(4): 633−637 doi: 10.1248/bpb.31.633
Huetsch JC, Suresh K, Shimoda LA (2019) Regulation of smooth muscle cell proliferation by NADPH oxidases in pulmonary hypertension. Antioxidants (Basel) 8(3): 56. https://doi.org/10.3390/antiox8030056 doi: 10.3390/antiox8030056
Jung SW, Lee MH, Kim YC, Paik SG, Choi YH, Kim YS, Kang KI (2004) Modulation of the transactivation function of nuclear factor-kappaB by lipopolysaccharide in RAW264.7 macrophages. Int J Oncol 25(4): 1081-1087. https://doi.org/10.3892/ijo.25.4.1081
Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38(11): 3000−3006 doi: 10.1161/STROKEAHA.107.489765
Kasuno K, Takabuchi S, Fukuda K, Kizaka-Kondoh S, Yodoi J, Adachi T, Semenza GL, Hirota K (2004) Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J Biol Chem 279(4): 2550−2558 doi: 10.1074/jbc.M308197200
Kohl R, Zhou J, Brune B (2006) Reactive oxygen species attenuate nitric-oxide-mediated hypoxia-inducible factor-1alpha stabilization. Free Radic Biol Med 40(8): 1430−1442 doi: 10.1016/j.freeradbiomed.2005.12.012
Kozhukhar AV, Yasinska IM, Sumbayev VV (2006) Nitric oxide inhibits HIF-1alpha protein accumulation under hypoxic conditions: implication of 2-oxoglutarate and iron. Biochimie 88(5): 411−418 doi: 10.1016/j.biochi.2005.09.007
Kurokawa H, Ito H, Terasaki M, Matano D, Taninaka A, Shigekawa H, Matsui H (2019) Nitric oxide regulates the expression of heme carrier protein-1 via hypoxia inducible factor-1alpha stabilization. PLoS One 14(9): e0222074. https://doi.org/10.1371/journal.pone.0222074 doi: 10.1371/journal.pone.0222074
Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111(8): 1201−1209 doi: 10.1172/JCI200314172
Lee G, Won HS, Lee YM, Choi JW, Oh TI, Jang JH, Choi DK, Lim BO, Kim YJ, Park JW, Puigserver P, Lim JH (2016) Oxidative dimerization of PHD2 is responsible for its inactivation and contributes to metabolic reprogramming via HIF-1alpha activation. Sci Rep 6: 18928. https://doi.org/10.1038/srep18928 doi: 10.1038/srep18928
Liu W, Furuichi T, Miyake M, Rosenberg GA, Liu KJ (2007) Differential expression of tissue inhibitor of metalloproteinases-3 in cultured astrocytes and neurons regulates the activation of matrix metalloproteinase-2. J Neurosci Res 85(4): 829−836 doi: 10.1002/jnr.21179
Liu W, Sood R, Chen Q, Sakoglu U, Hendren J, Cetin O, Miyake M, Liu KJ (2008) Normobaric hyperoxia inhibits NADPH oxidase-mediated matrix metalloproteinase-9 induction in cerebral microvessels in experimental stroke. J Neurochem 107: 1196−1205 doi: 10.1111/j.1471-4159.2008.05664.x
Mancuso C, Perluigi M, Cini C, De Marco C, Giuffrida Stella AM, Calabrese V (2006) Heme oxygenase and cyclooxygenase in the central nervous system: a functional interplay. J Neurosci Res 84(7): 1385−1391 doi: 10.1002/jnr.21049
Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2: 535−562 doi: 10.1016/j.redox.2014.02.006
Matsuzaki I, Chatterjee S, Debolt K, Manevich Y, Zhang Q, Fisher AB (2005) Membrane depolarization and NADPH oxidase activation in aortic endothelium during ischemia reflect altered mechanotransduction. Am J Physiol Heart Circ Physiol 288(1): H336−H343 doi: 10.1152/ajpheart.00025.2004
Maxwell PH, Eckardt KU (2016) HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol 12(3): 157−168 doi: 10.1038/nrneph.2015.193
Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14(8): 3470−3481 doi: 10.1091/mbc.e02-12-0791
Moon EJ, Sonveaux P, Porporato PE, Danhier P, Gallez B, Batinic-Haberle I, Nien YC, Schroeder T, Dewhirst MW (2010) NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. Proc Natl Acad Sci USA 107(47): 20477−20482 doi: 10.1073/pnas.1006646107
Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. J Appl Physiol 98(1): 390−403 doi: 10.1152/japplphysiol.00733.2004
Muzaffar S, Shukla N, Angelini GD, Jeremy JY (2005) Acute hypoxia simultaneously induces the expression of gp91phox and endothelial nitric oxide synthase in the porcine pulmonary artery. Thorax 60(4): 305−313 doi: 10.1136/thx.2003.018796
Oehme F, Ellinghaus P, Kolkhof P, Smith TJ, Ramakrishnan S, Hutter J, Schramm M, Flamme I (2002) Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem Biophys Res Commun 296(2): 343−349 doi: 10.1016/S0006-291X(02)00862-8
Okamoto T, Valacchi G, Gohil K, Akaike T, van der Vliet A (2002) S-nitrosothiols inhibit cytokine-mediated induction of matrix metalloproteinase-9 in airway epithelial cells. Am J Respir Cell Mol Biol 27(4): 463−473 doi: 10.1165/rcmb.2002-0039OC
Pan R, Liu KJ, Qi Z (2019) Zinc causes the death of hypoxic astrocytes by inducing ROS production through mitochondria dysfunction. Biophys Rep 5(4): 209−217 doi: 10.1007/s41048-019-00098-3
Pouyssegur J, Mechta-Grigoriou F (2006) Redox regulation of the hypoxia-inducible factor. Biol Chem 387(10−11): 1337−1346
Ridnour LA, Thomas DD, Switzer C, Flores-Santana W, Isenberg JS, Ambs S, Roberts DD, Wink DA (2008) Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide 19(2): 73−76 doi: 10.1016/j.niox.2008.04.006
Rieger JM, Shah AR, Gidday JM (2002) Ischemia-reperfusion injury of retinal endothelium by cyclooxygenase- and xanthine oxidase-derived superoxide. Exp Eye Res 74(4): 493−501 doi: 10.1006/exer.2001.1156
Rodrigo J, Fernandez AP, Alonso D, Serrano J, Fernandez-Vizarra P, Martinez-Murillo R, Bentura ML, Martinez A (2004) Nitric oxide in the rat cerebellum after hypoxia/ischemia. Cerebellum 3(4): 194−203 doi: 10.1080/14734220410017941
Sandau KB, Fandrey J, Brune B (2001) Accumulation of HIF-1alpha under the influence of nitric oxide. Blood 97(4): 1009−1015 doi: 10.1182/blood.V97.4.1009
Semenza GL, Prabhakar NR (2018) The role of hypoxia-inducible factors in carotid body (patho) physiology. J Physiol 596(15): 2977−2983 doi: 10.1113/JP275696
Siques P, Brito J, Pena E (2018) Reactive oxygen species and pulmonary vasculature during hypobaric hypoxia. Front Physiol 9: 865. https://doi.org/10.3389/fphys.2018.00865 doi: 10.3389/fphys.2018.00865
Nauser T, Koppenol WH (2002) The rate constant of the reaction of superoxide with nitrogen monoxide: approaching the diffusion limit. J Phys Chem A 106(16): 4084−4086 doi: 10.1021/jp025518z
Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Riveros-Moreno V, Moncada S (1994) Nitric oxide synthase activity in human gynecological cancer. Cancer Res 54(5): 1352-1354
Vaux EC, Metzen E, Yeates KM, Ratcliffe PJ (2001) Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98(2): 296−302 doi: 10.1182/blood.V98.2.296
Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270(3): 1230−1237 doi: 10.1074/jbc.270.3.1230
Wang H, MacNaughton WK (2005) Overexpressed beta-catenin blocks nitric oxide-induced apoptosis in colonic cancer cells. Cancer Res 65(19): 8604−8607 doi: 10.1158/0008-5472.CAN-05-1169
Wang J, Wang R, Li N, Shen X, Huang G, Zhu J, He D (2018) High-performance reoxygenation from PLGA-PEG/PFOB emulsions: a feedback relationship between ROS and HIF-1alpha. Int J Nanomedicine 13: 3027−3038 doi: 10.2147/IJN.S155509
Wang YH, Wang WY, Chang CC, Liou KT, Sung YJ, Liao JF, Chen CF, Chang S, Hou YC, Chou YC, Shen YC (2006) Taxifolin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-oxidative effect and modulation of NF-kappa B activation. J Biomed Sci 13(1): 127−141 doi: 10.1007/s11373-005-9031-0
Weaver J, Porasuphatana S, Tsai P, Pou S, Roman LJ, Rosen GM (2005) A comparative study of neuronal and inducible nitric oxide synthases: generation of nitric oxide, superoxide, and hydrogen peroxide. Biochim Biophys Acta 1726(3): 302−308 doi: 10.1016/j.bbagen.2005.08.012
Yamamoto N, Oyaizu T, Enomoto M, Horie M, Yuasa M, Okawa A, Yagishita K (2020) VEGF and bFGF induction by nitric oxide is associated with hyperbaric oxygen-induced angiogenesis and muscle regeneration. Sci Rep 10(1): 2744. https://doi.org/10.1038/s41598-020-59615-x doi: 10.1038/s41598-020-59615-x
Yuan ZR, Liu B, Zhang Y, Yuan L, Muteliefu G, Lu J (2004) Upregulated expression of neuronal nitric oxide synthase by insulin in both neurons and astrocytes. Brain Res 1008(1): 1−10 doi: 10.1016/j.brainres.2004.01.076
Zhao Y, Yan F, Yin J, Pan R, Shi W, Qi Z, Fang Y, Huang Y, Li S, Luo Y, Ji X, Liu KJ (2018) Synergistic interaction between zinc and reactive oxygen species amplifies ischemic brain injury in rats. Stroke 49(9): 2200−2210 doi: 10.1161/STROKEAHA.118.021179
Zhou J, Kohl R, Herr B, Frank R, Brune B (2006) Calpain mediates a von Hippel-Lindau protein-independent destruction of hypoxia-inducible factor-1alpha. Mol Biol Cell 17(4): 1549−1558 doi: 10.1091/mbc.e05-08-0770