2024 Volume 33 Issue 8
Article Contents

Chun Zhou(周淳)1, 2, Yan-Mei Zhao(赵燕美)1, 2, †, Xiao-Liang Yang(杨晓亮)1, 2, Yi-Fei Lu(陆宜飞)1, 2, Yu Zhou(周雨)1, 2, Xiao-Lei Jiang(姜晓磊)1, 2, Hai-Tao Wang(汪海涛)1, 2, Yang Wang(汪洋)1, 2, Jia-Ji Li(李家骥)1, 2, Mu-Sheng Jiang(江木生)1, 2, Xiang Wang(汪翔)1, 2, Hai-Long Zhang(张海龙)1, 2, Hong-Wei Li(李宏伟)1, 2, and Wan-Su Bao(鲍皖苏)1, 2, ‡. 2024: Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering, Chinese Physics B, 33(8): 080306. doi: 10.1088/1674-1056/ad51f6
Citation: Chun Zhou(周淳)1, 2, Yan-Mei Zhao(赵燕美)1, 2, †, Xiao-Liang Yang(杨晓亮)1, 2, Yi-Fei Lu(陆宜飞)1, 2, Yu Zhou(周雨)1, 2, Xiao-Lei Jiang(姜晓磊)1, 2, Hai-Tao Wang(汪海涛)1, 2, Yang Wang(汪洋)1, 2, Jia-Ji Li(李家骥)1, 2, Mu-Sheng Jiang(江木生)1, 2, Xiang Wang(汪翔)1, 2, Hai-Long Zhang(张海龙)1, 2, Hong-Wei Li(李宏伟)1, 2, and Wan-Su Bao(鲍皖苏)1, 2, ‡. 2024: Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering, Chinese Physics B, 33(8): 080306. doi: 10.1088/1674-1056/ad51f6

Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering

  • Received Date: 17/04/2024
    Accepted Date: 29/05/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61505261, 62101597, 61605248, and 61675235), the National Key Research and Development Program of China (Grant No. 2020YFA0309702), the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410534 and 202300410532), and the Fund of the Anhui Initiative in Quantum Information Technologies.

  • The reference-frame-independent (RFI) quantum key distribution (QKD) is suitable for satellite-based links by removing the active alignment on the reference frames. However, how the beam wandering influences the performance of RFI-QKD remains a pending issue in satellite-to-ground links. In this paper, based on the mathematical model for characterizing beam wandering, we present the security analysis for satellite-to-ground RFI-QKD and analytically derive formulas for calculating the secret key rate with beam wandering. Our simulation results show that the performance of RFI-QKD is better than the Bennett-Brassard 1984 (BB84) QKD with beam wandering in asymptotic case. Furthermore, the degree of influences of beam wandering is specifically presented for satellite-to-ground RFI-QKD when statistical fluctuations are taken into account. Our work can provide theoretical support for the realization of RFI-QKD using satellite-to-ground links and have implications for the construction of large-scale satellite-based quantum networks.
  • 加载中
  • Bennett C H and Brassard G 2014 Theor. Comput. Sci. 560 7

    Google Scholar Pub Med

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    Google Scholar Pub Med

    Takeoka M, Guha S and Wilde M M 2014 Nat. Commun. 5 5235

    Google Scholar Pub Med

    Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 15043

    Google Scholar Pub Med

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, et al. 2023 Phys. Rev. Lett. 130 210801

    Google Scholar Pub Med

    Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, et al. 2022 Nat. Photon. 16 154

    Google Scholar Pub Med

    Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400

    Google Scholar Pub Med

    Ma X F, Zeng P and Zhou H Y 2018 Phys. Rev. X 8 031043

    Google Scholar Pub Med

    Wang X B, Yu Z W, Hu and X L 2018 Phys. Rev. A 98 062323

    Google Scholar Pub Med

    Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, et al. 2017 PRX Quantum 3 020315

    Google Scholar Pub Med

    Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932

    Google Scholar Pub Med

    Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287

    Google Scholar Pub Med

    Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, et al. 1996 Phys. Rev. Lett. 76 722

    Google Scholar Pub Med

    Duan L M, Lukin M D, Cirac J L and Zoller P 2001 Nature 414 413

    Google Scholar Pub Med

    Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891

    Google Scholar Pub Med

    Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417

    Google Scholar Pub Med

    Yang S J, Wang X J, Bao X H and Pan J W 2016 Nat. Photon. 10 381

    Google Scholar Pub Med

    Vallone G, Bacco D, Dequal D, Gaiarin S, Luceri V, et al. 2015 Phys. Rev. Lett. 115 040502

    Google Scholar Pub Med

    Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, et al. 2017 Nature 549 43

    Google Scholar Pub Med

    Kimble H J 2008 Nature 453 1023

    Google Scholar Pub Med

    Wehner S, Elkouss D and Hanson R 2018 Science 362 9288

    Google Scholar Pub Med

    Wang S, Chen W, Yin Z Q, Li H W, He D Y, et al. 2014 Opt. Express 22 21739

    Google Scholar Pub Med

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, et al. 2021 Nature 589 214

    Google Scholar Pub Med

    Sidhu J S, Joshi S K, Gündoǧan M, Brougham T, Lowndes D, et al. 2021 IET Quantum Communication 2 182

    Google Scholar Pub Med

    Li Y, Liao S K, Cao Y, Ren J G, Liu W Y, et al. 2022 Optica 9 933

    Google Scholar Pub Med

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, et al. 2020 Nature 582 501

    Google Scholar Pub Med

    Yin J, Cao Y, Li Y H, Ren J G, Liao S K, et al. 2017 Phys. Rev. Lett. 119 200501

    Google Scholar Pub Med

    Li B, Cao Y, Li Y H, Cai W Q, Liu W Y, et al. 2022 Phys. Rev. Lett. 128 170501

    Google Scholar Pub Med

    Ecker S, Pseiner J, Piris J and Bohmann M 2023 International Conference on Space Optics-ICSO 12777 925

    Google Scholar Pub Med

    Laing A, Scarani V, Rarity J G and O’Brien J L 2010 Phys. Rev. A 82 012304

    Google Scholar Pub Med

    Wabnig J, Bitauld D, Li H W, Laing A, O’brien J L, et al. 2013 New J. Phys. 15 073001

    Google Scholar Pub Med

    Chun H, Choi I, Faulkner G, Clarke L and Barber B, et al. 2017 Opt. Express 25 6784

    Google Scholar Pub Med

    Xue Y, Shi L, Wei J H, Yu L L, Yu H C, et al. 2020 Int. J. Theor. Phys. 59 3299

    Google Scholar Pub Med

    Xue Y, Shi L, Chen W, Yin Z Q, Fan Yuan G J, et al. 2020 Phys. Rev. A 102 062602

    Google Scholar Pub Med

    Wang W Y, Xu F H and Lo H K 2018 Phys. Rev. A 97 032337

    Google Scholar Pub Med

    Vasylyev D, Semenov A A, Vogel W, Günthner K, Thurn A, et al. 2017 Phys. Rev. A 96 043856

    Google Scholar Pub Med

    Liorni C, Kampermann H and Bruß D 2019 New J. Phys. 21 093055

    Google Scholar Pub Med

    Chen H, Wang J P, Tang B Y, Li Z H, Liu B, et al. 2020 Opt. Lett 45 3022

    Google Scholar Pub Med

    Scriminich A, Foletto G, Picciariello F, Stanco A, Vallone G, et al. 2022 Quantum Sci. Technol. 7 045029

    Google Scholar Pub Med

    Lu Q H, Wang F X, Huang K, Wu X, Wang Z H, et al. 2022 Phys. Rev. Appl. 17 034045

    Google Scholar Pub Med

    Henniger H and Wilfert O 2010 Radioengineering 19 2

    Google Scholar Pub Med

    Zhu X M and Kahn J M 2002 IEEE Trans. Commun. 50 1293

    Google Scholar Pub Med

    Hulea M, Ghassemlooy Z, Rajbhandari S and Tang X 2014 J. Light. Technol. 32 1323

    Google Scholar Pub Med

    Milonni P W, Carter J H, Peterson C G and Hughes R J 2004 J. Opt. B: Quantum Semiclassical Opt. 6 S742

    Google Scholar Pub Med

    Semenov A A and Vogel W 2009 Phys. Rev. A 80 021802

    Google Scholar Pub Med

    Vasylyev D Y, Semenov A A and Vogel W 2012 Phys. Rev. Lett. 108 220501

    Google Scholar Pub Med

    Vasylyev D, Semenov A A and Vogel W 2016 Phys. Rev. Lett. 117 090501

    Google Scholar Pub Med

    Vasylyev D, Vogel W and Moll F 2019 Phys. Rev. A 99 053830

    Google Scholar Pub Med

    Vasylyev D, Vogel W and Semenov A A 2018 Phys. Rev. A 97 063852

    Google Scholar Pub Med

    Liang W T and Jiao R Z 2020 New J. Phys. 22 083074

    Google Scholar Pub Med

    Dong Q, Huang G Q, Cui W and Jiao R Z 2021 Quantum Sci. Technol. 7 015014

    Google Scholar Pub Med

    Derkach I and Usenko V 2023 International Conference on Space Optics-ICSO 12777 pp. 1089-1103

    Google Scholar Pub Med

    Hu H Y, Zhong H, Ye W and Guo Y 2022 Commun. Theor. Phys. 74 125102

    Google Scholar Pub Med

    Dequal D, Trigo V L, Roman R V, Vallone G, Villoresi P, et al. 2021 NPJ Quantum Inf. 7 3

    Google Scholar Pub Med

    Wang S Y, Huang P, Wang T and Zeng G H 2018 New J. Phys. 20 083037

    Google Scholar Pub Med

    Klen M and Semenov A A 2023 Phys. Rev. A 108 033718

    Google Scholar Pub Med

    Pirandola S 2021 Phys. Rev. Res. 3 023130

    Google Scholar Pub Med

    Bohren C F and Huffman D R 2008 Absorption and scattering of light by small particles (Chichester: John Wiley and Sons)

    Google Scholar Pub Med

    Baskov R A and Chumak O O 2020 J. Opt. 22 105603

    Google Scholar Pub Med

    Baskov R 2022 Phys. Rev. A 105 063713

    Google Scholar Pub Med

    Andrews L C and Phillips R L 2005 Laser Beam Propagation Through Random Media: Second Edition (Bellingham: SPIE-International Society for Optical Engineering)

    Google Scholar Pub Med

    Hufnagel R E and Stanley N R 1964 JOSA 54 52

    Google Scholar Pub Med

    Valley G C 1980 Appl. Opt. 19 574

    Google Scholar Pub Med

    Sidhu J S, Brougham T, McArthur D, Pousa, Roberto G and Oi Daniel K L 2022 NPJ Quantum Inf. 8 18

    Google Scholar Pub Med

    Christandl M, König R and Renner R 2009 Phys. Rev. Lett. 102 020504

    Google Scholar Pub Med

    Sheridan L, Le T P and Scarani V 2010 New J. Phys. 12 123019

    Google Scholar Pub Med

    Wang X B 2005 Phys. Rev. Lett. 94 230503

    Google Scholar Pub Med

    Lo H K, and Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504

    Google Scholar Pub Med

    Ma X F, Qi B Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326

    Google Scholar Pub Med

    Chernoff H 1952 Ann. Math. Stat. 493

    Google Scholar Pub Med

    Curty M, Xu F H, Cui W, Lim C C W, Tamaki K, et al. 2014 Nat. Commun. 5 3732

    Google Scholar Pub Med

    Zhang Z, Zhao Q, Razavi M and Ma X F 2017 Phys. Rev. A 95 012333

    Google Scholar Pub Med

    Jiang X L, Wang Y, Li J J, Lu Y F, Hao C P, et al. 2023 Opt. Express 31 9196

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(143) PDF downloads(0) Cited by(0)

Access History

Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering

Fund Project: 

Abstract: The reference-frame-independent (RFI) quantum key distribution (QKD) is suitable for satellite-based links by removing the active alignment on the reference frames. However, how the beam wandering influences the performance of RFI-QKD remains a pending issue in satellite-to-ground links. In this paper, based on the mathematical model for characterizing beam wandering, we present the security analysis for satellite-to-ground RFI-QKD and analytically derive formulas for calculating the secret key rate with beam wandering. Our simulation results show that the performance of RFI-QKD is better than the Bennett-Brassard 1984 (BB84) QKD with beam wandering in asymptotic case. Furthermore, the degree of influences of beam wandering is specifically presented for satellite-to-ground RFI-QKD when statistical fluctuations are taken into account. Our work can provide theoretical support for the realization of RFI-QKD using satellite-to-ground links and have implications for the construction of large-scale satellite-based quantum networks.

Reference (73)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return