2024 Volume 33 Issue 11
Article Contents

Zhen Yang(杨真), Jia-Wei Xian(咸家伟), Xing-Yu Gao(高兴誉), Fu-Yang Tian(田付阳), and Hai-Feng Song(宋海峰). 2024: The hcp-bcc transition of Be via anisotropy of modulus and sound velocity, Chinese Physics B, 33(11): 116401. doi: 10.1088/1674-1056/ad73b0
Citation: Zhen Yang(杨真), Jia-Wei Xian(咸家伟), Xing-Yu Gao(高兴誉), Fu-Yang Tian(田付阳), and Hai-Feng Song(宋海峰). 2024: The hcp-bcc transition of Be via anisotropy of modulus and sound velocity, Chinese Physics B, 33(11): 116401. doi: 10.1088/1674-1056/ad73b0

The hcp-bcc transition of Be via anisotropy of modulus and sound velocity

  • Received Date: 17/05/2024
    Accepted Date: 09/08/2024
  • Fund Project:

    This work was supported by the National Natural Science Foundation of China (Grant Nos. U23A20537, U2230401, and 52371174) and Funding of National Key Laboratory of Computational Physics.

  • PACS: 64.70.-p; 46.25.Hf; 46.40.-f; 46.25.Cc

  • Based on ab initio calculations, we utilize the mean-field potential approach with the quantum modification in conjunction with stress-strain relation to investigate the elastic anisotropies and sound velocities of hcp and bcc Be under high-temperature (0-6000 K) and high-pressure (0-500 GPa) conditions. We propose a general definition of anisotropy for elastic moduli and sound velocities. Results suggest that the elastic anisotropy of Be is more significantly influenced by pressure than by temperature. The pressure-induced increase of $c/a$ ratio makes the anisotropy of hcp Be significantly strengthen. Nevertheless, the hcp Be still exhibits smaller anisotropy than bcc Be in terms of elastic moduli and sound velocities. We suggest that measuring the anisotropy in shear sound velocity may be an approach to distinguishing the hcp-bcc phase transition under extreme conditions.
  • 加载中
  • Migliori A, Ledbetter H, Thoma D J and Darling T W 2004 J. Appl. Phys. 95 2436

    Google Scholar Pub Med

    Zheng L F, Wang X G, Yue L N, Xie Y J, Wu B P and Zhong J M 2020 Mater. Sci. Forum. 977 261

    Google Scholar Pub Med

    Wu C J, Myint P C, Pask J E, Prisbrey C J, Correa A A, Suryanarayana P and Varley J B 2021 J. Phys. Chem. A 125 1610

    Google Scholar Pub Med

    Lazićki A, Dewaele A, Loubeyre P and Mezouar M 2012 Phys. Rev. B 86 174118

    Google Scholar Pub Med

    Brown J L, Knudson M D, Alexander C S and Asay J R 2014 J. Appl. Phys. 116 033502

    Google Scholar Pub Med

    McCoy C A, Knudson M D and Desjarlais M P 2019 Phys. Rev. B 100 054107

    Google Scholar Pub Med

    Robert G, Legrand P and Bernard S 2010 Phys. Rev. B 82 104118

    Google Scholar Pub Med

    Xian J W, Yan J, Liu H F, Sun T, Zhang G M, Gao X Y and Song H F 2019 Phys. Rev. B 99 064102

    Google Scholar Pub Med

    Wu J, González-Cataldo F and Militzer B 2021 Phys. Rev. B 104 014103

    Google Scholar Pub Med

    Ma Y G, Pang L G, Wang R and Zhou K 2023 Chin. Phys. Lett. 40 122101

    Google Scholar Pub Med

    Wu J, González-Cataldo F, Soubiran F and Militzer B 2022 J. Phys.: Condens. Matter 34 144003

    Google Scholar Pub Med

    Lu Y, Sun T, Zhang P, Zhang P, Zhang D B and Wentzcovitch R M 2017 Phys. Rev. Lett. 118 145702

    Google Scholar Pub Med

    Antonangeli D, Occelli F, Requardt H, Badro J, Fiquet G and Krisch M 2004 Earth Planet. Sci. Lett. 225 243

    Google Scholar Pub Med

    Belonoshko A B, Skorodumova N V, Rosengren A and Johansson B R 2008 Science 319 797

    Google Scholar Pub Med

    Luo F, Cai L C, Chen X R, Jing F Q and Alfè D 2012 J. Appl. Phys. 111 053503

    Google Scholar Pub Med

    Walsh K A 2009 Beryllium Chemistry and Processing (ASM International)

    Google Scholar Pub Med

    Kuksenko V, Roberts S and Tarleton E 2019 Int. J. Plast. 116 62

    Google Scholar Pub Med

    Kádas K, Vitos L, Johansson B and Kollár J 2007 Phys. Rev. B 75 035132

    Google Scholar Pub Med

    Anderson O L 1963 J. Phys. Chem. Solids 24 909

    Google Scholar Pub Med

    Wang Y, Chen D and Zhang X 2000 Phys. Rev. Lett. 84 3220

    Google Scholar Pub Med

    Wang Y, Ahuja R and Johansson B 2004 Int. J. Quantum Chem. 96 501

    Google Scholar Pub Med

    Li L and Wang Y 2001 Phys. Rev. B 63 245108

    Google Scholar Pub Med

    Song H and Liu H 2007 Phys. Rev. B 75 245126

    Google Scholar Pub Med

    Song H, Tian M, Liu H, Song H and Zhang G 2014 Chin. Phys. Lett. 31 016402

    Google Scholar Pub Med

    Gao X, Yang Z, Fang J, Xian J, Liu H and Song H A multiphase fast previewer based on mean-field potential approach: Beryllium as a prototype (in preparation)

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15

    Google Scholar Pub Med

    Jian D, Zhu X, Liu Y, Song H and Lai X 2021 Mater. Rep. 35 1082 (in Chinese)

    Google Scholar Pub Med

    Togo A and Tanaka I 2015 Scr. Mater. 108 1

    Google Scholar Pub Med

    Mermin N D 1965 Phys. Rev. 137 A1441

    Google Scholar Pub Med

    Wang Y, Wang J J, Zhang H, Manga V R, Shang S L, Chen L Q and Liu Z K 2010 J. Phys.: Condens. Matter 22 225404

    Google Scholar Pub Med

    Zener C 1948 Phys. Rev. 74 639

    Google Scholar Pub Med

    Every A 1980 Phys. Rev. B 22 1746

    Google Scholar Pub Med

    Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504

    Google Scholar Pub Med

    Steinle-Neumann G, Stixrude L and Cohen R E 1999 Phys. Rev. B 60 791

    Google Scholar Pub Med

    Ledbetter H and Migliori A 2006 J. Appl. Phys. 100 063516

    Google Scholar Pub Med

    Beason M T, Jensen B J and Crockett S D 2021 Phys. Rev. B 104 144106

    Google Scholar Pub Med

    Marsh S P 1980 LASL Shock Hugoniot Data (University of California Press) 5 p. 21

    Google Scholar Pub Med

    Tan H 2018 Experimental Shock Wave Physics (Beijing: National Defense Industry Press) p. 177

    Google Scholar Pub Med

    Mao H K, Shu J, Shen G, Hemley R J, Li B and Singh A K 1998 Nature 396 741

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(192) PDF downloads(0) Cited by(0)

Access History

The hcp-bcc transition of Be via anisotropy of modulus and sound velocity

Fund Project: 

Abstract: Based on ab initio calculations, we utilize the mean-field potential approach with the quantum modification in conjunction with stress-strain relation to investigate the elastic anisotropies and sound velocities of hcp and bcc Be under high-temperature (0-6000 K) and high-pressure (0-500 GPa) conditions. We propose a general definition of anisotropy for elastic moduli and sound velocities. Results suggest that the elastic anisotropy of Be is more significantly influenced by pressure than by temperature. The pressure-induced increase of $c/a$ ratio makes the anisotropy of hcp Be significantly strengthen. Nevertheless, the hcp Be still exhibits smaller anisotropy than bcc Be in terms of elastic moduli and sound velocities. We suggest that measuring the anisotropy in shear sound velocity may be an approach to distinguishing the hcp-bcc phase transition under extreme conditions.

Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return