2024 Volume 33 Issue 11
Article Contents

Wanbo Qu(曲万博), Zhihao Zhao(赵志昊), Yuxuan Yang(杨宇轩), Yang Zhang(张杨), Shengwu Guo(郭生武), Fei Li(李飞), Xiangdong Ding(丁向东), Jun Sun(孙军), and Haijun Wu(武海军). 2024: Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM, Chinese Physics B, 33(11): 116802. doi: 10.1088/1674-1056/ad7afc
Citation: Wanbo Qu(曲万博), Zhihao Zhao(赵志昊), Yuxuan Yang(杨宇轩), Yang Zhang(张杨), Shengwu Guo(郭生武), Fei Li(李飞), Xiangdong Ding(丁向东), Jun Sun(孙军), and Haijun Wu(武海军). 2024: Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM, Chinese Physics B, 33(11): 116802. doi: 10.1088/1674-1056/ad7afc

Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM

  • Received Date: 09/07/2024
    Accepted Date: 27/08/2024
  • Fund Project:

    Project supported by the financial support from the National Key R&D Program of China (Grant No. 2021YFB3201100), the National Natural Science Foundation of China (Grant No. 52172128), and the Top Young Talents Programme of Xi’an Jiaotong University.

  • PACS: 68.37.Ma; 06.60.-c; 77.22.Ej; 77.84.-s

  • The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope (AC-STEM) makes it an advanced and practical characterization technique for all materials. Owing to the prosperous advancement in computational technology, specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process. Utilizing advanced image processing algorithms promotes the rectification of image distortions, concurrently elevating the overall image quality to superior standards. Extracting high-resolution, pixel-level discrete information and converting it into atomic-scale, followed by performing statistical calculations on the physical matters of interest through quantitative analysis, represent an effective strategy to maximize the value of electron microscope images. The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers. This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives: contrast, lattice and strain, as well as atomic displacements and polarization. It further elaborates on practical applications of these methods in electronic functional materials, notably in piezoelectrics/ferroelectrics and thermoelectrics. It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research, elucidating the structure-property correlations in high-performance systems, and guiding synthesis strategies.
  • 加载中
  • Crewe A V, Wall J and Langmore J 1970 Science 168 1338

    Google Scholar Pub Med

    Pennycook S J and Jesson D E 1991 Ultramicrosc 37 14

    Google Scholar Pub Med

    Jones L, Yang H, Pennycook T J, Marshall M S J, Van Aert S, Browning N D, Castell M R and Nellist P D 2015 Adv. Struct. Chem. Imaging. 1 8

    Google Scholar Pub Med

    Galindo P L, Kret S, Sanchez A M, Laval J Y, Yáñez A, Pizarro J, Guerrero E, Ben T and Molina S I 2007 Ultramicrosc 107 1186

    Google Scholar Pub Med

    Bárcena-González G, Guerrero-Lebrero M P, Guerrero E, Yañez A, Fernández-Reyes D, González D and Galindo P L 2017 Ultramicrosc 182 283

    Google Scholar Pub Med

    Jones L and Nellist P D 2013 Microsc. Microanal. 19 1050

    Google Scholar Pub Med

    Jones L, Varambhia A, Beanland R, Kepaptsoglou D, Griffiths I, Ishizuka A, Azough F, Freer R, Ishizuka K, Cherns D, Ramasse Q M, Lozano-Perez S and Nellist P D 2018 Microscopy 67 98

    Google Scholar Pub Med

    https://www.hremresearch.com/Eng/download/documents/PPA%20M anual%20v5.0.pdf

    Google Scholar Pub Med

    https://www.hremresearch.com/Eng/download/documents/SmartAlign %20Manual.pdf

    Google Scholar Pub Med

    He W K, Wang D Y, Wu H J, et al. 2019 Science 365 1418

    Google Scholar Pub Med

    Qin B C, Wang D Y, He W K, Zhang Y, Wu H J, Pennycook S J and Zhao L D 2019 J. Am. Chem. Soc. 141 1141

    Google Scholar Pub Med

    Li F, Cabral M J, Xu B, Cheng Z X, Dickey E C, LeBeau J M, Wang J L, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R and Zhang S J 2019 Science 364 264

    Google Scholar Pub Med

    Qin H X, Qu W B, Zhang Y, Zhang Y S, Liu Z H, Zhang Q, Wu H J, Cai W and Sui J H 2022 Adv. Sci. 9 2200432

    Google Scholar Pub Med

    Jia C L, Lentzen M and Urban K 2003 Science 299 870

    Google Scholar Pub Med

    Jia C L, Lentzen M and Urban K 2004 Microsc. Microanal. 10 174

    Google Scholar Pub Med

    Lazić I, Bosch E G T and Lazar S 2016 Ultramicrosc 160 265

    Google Scholar Pub Med

    Lazić I and Bosch E G T 2017 Adv. Imaging Electron Phys. 199 75

    Google Scholar Pub Med

    Jia C L and Urban K 2004 Science 303 2001

    Google Scholar Pub Med

    Kumar A, Baker J N, Bowes P C, Cabral M J, Zhang S J, Dickey E C, Irving D L and LeBeau J M 2021 Nat. Mater. 20 62

    Google Scholar Pub Med

    Wang D Y, Huang Z W, Zhang Y, Hao L J, Wang G T, Deng S H, Wang H L, Chen J, He L H, Xiao B, Xu Y D, Pennycook S J, Wu H J and Zhao L D 2020 Sci. China Mater. 63 1759

    Google Scholar Pub Med

    Yin J, Shi X M, Tao H, Tan Z, Lv X, Ding X D, Sun J, Zhang Y, Zhang X M, Yao K, Zhu J G, Huang H B, Wu H J, Zhang S J and Wu J G 2022 Nat. Commun. 13 6333

    Google Scholar Pub Med

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D and Pennycook S J 2015 Science 348 547

    Google Scholar Pub Med

    Xiao Y, Liu W, Zhang Y, Wang D Y, Shi H N, Wang S N, Jin Y, Qu W B, Wu H J, Ding X D, Sun J and Zhao L D 2021 J. Mater. Chem. A 9 23011

    Google Scholar Pub Med

    Wang H G, Jiang X J, Wang Y, Stark R W, van Aken P A, Mannhart J and Boschker H 2020 Nano Lett. 20 88

    Google Scholar Pub Med

    Hÿtch M J, Snoeck E and Kilaas R 1998 Ultramicrosc 74 131

    Google Scholar Pub Med

    Neaton J B, Ederer C, Waghmare U V, Spaldin N A and Rabe K M 2005 Phys. Rev. B 71 014113

    Google Scholar Pub Med

    Chen S Q, Yuan S, Hou Z P, Tang Y L, Zhang J P, Wang T, Li K, Zhao W W, Liu X J, Chen L, Martin L W and Chen Z H 2020 Adv. Mater. 33 2000857

    Google Scholar Pub Med

    Liu Z R, Wang H, Li M, Tao L L, Paudel T R, Yu H Y, Wang Y X, Hong S Y, Zhang M, Ren Z H, Xie Y W, Tsymbal E Y, Chen J S, Zhang Z and Tian H 2023 Nature 613 656

    Google Scholar Pub Med

    Jia C L, Nagarajan V, He J Q, Houben L, Zhao T, Ramesh R, Urban K and Waser R 2007 Nat. Mater. 6 64

    Google Scholar Pub Med

    Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin, S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J and Ramesh R 2009 Nat. Mater. 8 229

    Google Scholar Pub Med

    Nelson C T, Winchester B, Zhang Y, Kim S J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q and Pan X Q 2011 Nano Lett. 11 828

    Google Scholar Pub Med

    Gao W P, Addiego C, Wang H, Yan X X, Hou Y S, Ji D X, Heikes C, Zhang Y, Li L Z, Huyan H, Blum T, Aoki T, Nie Y F, Schlom D G, Wu R and Pan X Q 2019 Nature 575 480

    Google Scholar Pub Med

    Wu H J, Zhang Y, Wu J G, Wang J and Pennycook S J 2019 Adv. Funct. Mater. 29 1902911

    Google Scholar Pub Med

    Zeches R J, Rossell M D, Zhang J X, et al. 2009 Science 326 977

    Google Scholar Pub Med

    Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, Xu Z, Huang Q W, Liao X Z, Chen L Q, Shrout T R and Zhang S J 2018 Nat. Mater. 17 349

    Google Scholar Pub Med

    Tao H, Wu H J, Liu Y, Zhang Y, Wu J G, Li F, Lyu X, Zhao C L, Xiao D Q, Zhu J G and Pennycook S J 2019 J. Am. Chem. Soc. 141 13987

    Google Scholar Pub Med

    Zhang N, Zheng T, Li N, Zhao C L, Yin J, Zhang Y, Wu H J, Pennycook S J and Wu J G 2021 ACS Appl. Mater. Interfaces 13 7461

    Google Scholar Pub Med

    Zhao C L, Wu H J, Li F, Cai Y Q, Zhang Y, Song D S, Wu J G, Lyu X, Yin J, Xiao D Q, Zhu J G and Pennycook S J 2018 J. Am. Chem. Soc. 140 15252

    Google Scholar Pub Med

    Fu H X and Bellaiche L 2003 Phys. Rev. Lett. 91 257601

    Google Scholar Pub Med

    Naumov I I, Bellaiche L and Fu H X 2004 Nature 432 737

    Google Scholar Pub Med

    Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schleputz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W and Ramesh R 2016 Nature 534 138

    Google Scholar Pub Med

    Das S, Tang Y L, Hong Z, et al. 2019 Nature 568 368

    Google Scholar Pub Med

    Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B and Ma X L 2020 Nat. Mater. 19 881

    Google Scholar Pub Med

    Jeong C, Lee J, Jo H, Oh J, Baik H, Go K J, Son J, Choi S Y, Prosandeev S, Bellaiche L and Yang Y 2024 Nat. Commun. 15 3887

    Google Scholar Pub Med

    Dong G H, Li S Z, Li T, et al. 2020 Adv. Mater. 32 2004477

    Google Scholar Pub Med

    Fu Z Q, Chen X F, Li Z Q, Hu T F, Zhang L L, Lu P, Zhang S J, Wang G S, Dong X K and Xu F F 2020 Nat. Commun. 11 3809

    Google Scholar Pub Med

    Liu Y X, Qu W B, Thong H C, Zhang Y, Zhang Y F, Yao F Z, Nguyen T N, Li J W, Zhang M H, Li J F, Han B, Gong W, Wu H J, Wu C F, Xu B and Wang K 2022 Adv. Mater. 34 2202558

    Google Scholar Pub Med

    Wang H, Wu H J, Chi X, Li Y Y, Zhou C H, Yang P, Yu X J, Wang J, Chow G M, Yan X, Pennycook S J and Chen J S 2022 ACS Appl. Mater. Interfaces 14 8557

    Google Scholar Pub Med

    Li J L, Qu W B, Daniels J, Wu H J, Liu L J, Wu J, Wang M W, Checchia S, Yang S, Lei H B, Lv R, Zhang Y, Wang D Y, Li X X, Ding X D, Sun J, Xu Z, Chang Y F, Zhang S J and Li F 2023 Science 380 87

    Google Scholar Pub Med

    Wu H J, Ning S C, Waqar M, Liu H J, Zhang Y, Wu H H, Li N, Wu Y, Yao K, Lookman T, Ding X D, Sun J, Wang J and Pennycook S J 2021 Nat. Commun. 12 2841

    Google Scholar Pub Med

    Gao P, Yang S Z, Ishikawa R, Li N, Feng B, Kumamoto A, Shibata N, Yu P and Ikuhara Y 2018 Phys. Rev. Lett. 120 267601

    Google Scholar Pub Med

    Li L Z, Cheng X X, Jokisaari J R, Gao P, Britson J, Adamo C, Heikes C, Schlom D G, Chen L Q and Pan X Q 2018 Phys. Rev. Lett. 120 137602

    Google Scholar Pub Med

    Waqar M, Wu H J, Ong K P, Liu H J, Li C J, Yang P, Zang W J, Liew W H, Diao C Z, Xi S B, Singh D J, He Q, Yao K, Pennycook S J and Wang J 2022 Nat. Commun. 13 3922

    Google Scholar Pub Med

    Liu H J, Wu H J, Ong K P, Yang T N, Yang P, Das P K, Chi X, Zhang Y, Diao C Z, Wong W K A, Chew E P, Chen Y F, Tan C K I, Rusydi A, Breese M B H, Singh D J, Chen L Q, Pennycook S J and Yao K 2020 Science 369 292

    Google Scholar Pub Med

    Li N, Zhu R X, Cheng X X, Liu H J, Zhang Z Y, Huang Y L, Chu Y H, Chen L Q, Ikuhara Y and Gao P 2021 Scripta Mater. 194 113624

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(98) PDF downloads(0) Cited by(0)

Access History

Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM

Fund Project: 

Abstract: The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope (AC-STEM) makes it an advanced and practical characterization technique for all materials. Owing to the prosperous advancement in computational technology, specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process. Utilizing advanced image processing algorithms promotes the rectification of image distortions, concurrently elevating the overall image quality to superior standards. Extracting high-resolution, pixel-level discrete information and converting it into atomic-scale, followed by performing statistical calculations on the physical matters of interest through quantitative analysis, represent an effective strategy to maximize the value of electron microscope images. The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers. This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives: contrast, lattice and strain, as well as atomic displacements and polarization. It further elaborates on practical applications of these methods in electronic functional materials, notably in piezoelectrics/ferroelectrics and thermoelectrics. It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research, elucidating the structure-property correlations in high-performance systems, and guiding synthesis strategies.

Reference (55)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return