2024 Volume 33 Issue 11
Article Contents

Jiahao Xie(颉家豪)†, Zewei Li(李泽唯)†, Shengqiao Wang(王晟侨), and Lijun Zhang(张立军)‡. 2024: Light emission from multiple self-trapped excitons in one-dimensional Ag-based ternary halides, Chinese Physics B, 33(11): 117102. doi: 10.1088/1674-1056/ad7e9c
Citation: Jiahao Xie(颉家豪)†, Zewei Li(李泽唯)†, Shengqiao Wang(王晟侨), and Lijun Zhang(张立军)‡. 2024: Light emission from multiple self-trapped excitons in one-dimensional Ag-based ternary halides, Chinese Physics B, 33(11): 117102. doi: 10.1088/1674-1056/ad7e9c

Light emission from multiple self-trapped excitons in one-dimensional Ag-based ternary halides

  • Received Date: 17/08/2024
    Accepted Date: 07/09/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62125402 and 62321166653).

  • PACS: 71.38.Ht; 78.20.Bh; 78.55.Hx

  • Ternary metal halides based on Cu(I) and Ag(I) have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties, low toxicity, and robust stability. While the self-trapped excitons (STEs) emission mechanisms of Cu(I) halides are well understood, the STEs in Ag(I) halides remain less thoroughly explored. This study explores the STE emission efficiency within the $A_{2}$Ag$X_{3}$ ($A = {\rm Rb}$, Cs; $X = {\rm Cl}$, Br, I) system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams. We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers. Moreover, we investigate the impact of structural compactness on emission efficiency and find that the excessive electron-phonon coupling in this system can be reduced by increasing the structural compactness. The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs$_{2}$Ag$X_{3}$ and Rb$_{2}$Ag$X_{3}$ systems. These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials. The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094.
  • 加载中
  • Ma Z, Ji X, Lin S, Chen X, Wu D, Li X, Zhang Y, Shan C, Shi Z and Fang X 2023 Adv. Mater. 35 2300731

    Google Scholar Pub Med

    Banerjee D and Saparov B 2023 Chem. Mater. 35 3364

    Google Scholar Pub Med

    Zhang Z, Zhao R, Teng S, Huang K, Zhang L, Wang D, Yang W, Xie R and Pradhan N 2020 Small 16 2004272

    Google Scholar Pub Med

    Kumar P, Creason T D, Fattal H, Sharma M, Du M H and Saparov B 2021 Adv. Funct. Mater. 31 2104941

    Google Scholar Pub Med

    Zhang M, Wang X, Yang B, Zhu J, Niu G, Wu H, Yin L, Du X, Niu M, Ge Y, Xie Q, Yan Y and Tang J 2021 Adv. Funct. Mater. 31 2007921

    Google Scholar Pub Med

    Zhang Z, Guo X, Huang K, Sun X, Li X, Zeng H, Zhu X, Zhang Y and Xie R 2022 J. Lumin. 241 118500

    Google Scholar Pub Med

    Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J and Hosono H 2018 Adv. Mater. 30 1804547

    Google Scholar Pub Med

    Zhang Z X, Li C, Lu Y, Tong X W, Liang F X, Zhao X Y, Wu D, Xie C and Luo L B 2019 J. Phys. Chem. Lett. 10 5343

    Google Scholar Pub Med

    Roccanova R, Yangui A, Seo G, Creason T D, Wu Y, Kim D Y, Du M H and Saparov B 2019 ACS Mater. Lett. 1 459

    Google Scholar Pub Med

    Creason T D, Yangui A, Roccanova R, Strom A, Du M and Saparov B 2019 Adv. Opt. Mater. 1901338

    Google Scholar Pub Med

    Ma Z, Shi Z, Qin C, Cui M, Yang D, Wang X, Wang L, Ji X, Chen X, Sun J, Wu D, Zhang Y, Li X J, Zhang L and Shan C 2020 ACS Nano 14 4475

    Google Scholar Pub Med

    Wang L, Shi Z, Ma Z, Yang D, Zhang F, Ji X, Wang M, Chen X, Na G, Chen S, Wu D, Zhang Y, Li X, Zhang L and Shan C 2020 Nano Lett. 20 3568

    Google Scholar Pub Med

    Ma Z, Shi Z, Yang D, Li Y, Zhang F, Wang L, Chen X, Wu D, Tian Y, Zhang Y, Zhang L, Li X and Shan C 2021 Adv. Mater. 33 2001367

    Google Scholar Pub Med

    Wang Z, Wang L, Xie J, Yang Y, Song Y, Xiao G, Fu Y, Zhang L, Fang Y, Yang D and Dong Q 2024 Small 20 2309922

    Google Scholar Pub Med

    Wu D, Luo Y, He P, An K, Lai J, Feng P, Zhou M, Liu Y, Tang X and Han G 2023 ACS Appl. Opt. Mater. 1 78

    Google Scholar Pub Med

    Fan R, Qiao J, Xu J, Feng S and Liu G 2024 Opt. Lett. 49 3942

    Google Scholar Pub Med

    Yang D, Wang F, Li S, Shi Z and Li S 2024 J. Phys. Chem. C 128 2223

    Google Scholar Pub Med

    Yao M M, Zhang Q, Wang D, Chen R, Yin Y C, Xia J, Tang H, Xu W P and Yu S H 2022 Adv. Funct. Mater. 32 2202894

    Google Scholar Pub Med

    Dai P, Xu Z M and Wang Y X 2011 Chin. Phys. Lett. 28 017804

    Google Scholar Pub Med

    Fan R, Qiao J, Xu J, Feng S and Liu G 2023 J. Alloys Compd. 960 170858

    Google Scholar Pub Med

    Wang S, Liu R, Li J, Meng C, Liu J, Chen J, Cheng P and Wu K 2024 Angew. Chem. Int. Ed. 63 e202403927

    Google Scholar Pub Med

    He T, Zhou Y, Wang X, Yin J, Gutiérrez-Arzaluz L, Wang J X, Zhang Y, Bakr O M and Mohammed O F 2022 ACS Energy Lett. 7 2753

    Google Scholar Pub Med

    Wen X, Buryi M, Babin V, John D, Kučerková R, Nikl M, Wang Q, Li Y, Li W, Yang F, OuYang X and Wu Y 2024 Laser Photonics Rev. 2400518

    Google Scholar Pub Med

    Du M H 2020 ACS Energy Lett. 5 464

    Google Scholar Pub Med

    Ma Z, Liu Z, Lu S, Wang L, Feng X, Yang D, Wang K, Xiao G, Zhang L, Redfern S A T and Zou B 2018 Nat. Commun. 9 4506

    Google Scholar Pub Med

    Li Q, Chen Z, Yang B, Tan L, Xu B, Han J, Zhao Y, Tang J and Quan Z 2020 J. Am. Chem. Soc. 142 1786

    Google Scholar Pub Med

    Dai S, Xing X, Hadjiev V G, Qin Z, Tong T, Yang G, Wang C, Hou L, Deng L, Wang Z, Feng G and Bao J 2023 Mater. Today Phys. 30 100926

    Google Scholar Pub Med

    Zhang L, Li S, Sun H, Jiang Q, Wang Y, Fang Y, Shi Y, Duan D, Wang K, Jiang H, Sui L, Wu G, Yuan K and Zou B 2023 Angew. Chem. Int. Ed. 62 e202301573

    Google Scholar Pub Med

    Feng Y, Chen Y, Wang L, Wang J, Chang D, Yuan Y, Wu M, Fu R, Zhang L, Wang Q, Wang K, Guo H and Wang L 2024 Chin. Phys. Lett. 41 063201

    Google Scholar Pub Med

    Stoneham M 2001 Theories of Defects in Solids (Oxford, New York: Oxford University Press)

    Google Scholar Pub Med

    Di Bartolo B 1991 Advances in Nonradiative Processes in Solids (Vol. 249) (Boston, MA: Springer US)

    Google Scholar Pub Med

    Landsberg P T 1992 Recombination in Semiconductors (Cambridge: Cambridge University Press)

    Google Scholar Pub Med

    Jung Y K, Kim S, Kim Y C and Walsh A 2021 J. Phys. Chem. Lett. 12 8447

    Google Scholar Pub Med

    Xing Z, Zhou Z, Zhong G, Chan C C S, Li Y, Zou X, Halpert J E, Su H and Wong K S 2022 Adv. Funct. Mater. 32 2207638

    Google Scholar Pub Med

    Wang X, Meng W, Liao W, Wang J, Xiong R G and Yan Y 2019 J. Phys. Chem. Lett. 10 501

    Google Scholar Pub Med

    Sun H Y, Xiong L and Jiang H 2023 Chem. Phys. Rev. 4 031302

    Google Scholar Pub Med

    Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982

    Google Scholar Pub Med

    Adamo C and Barone V 1999 J. Chem. Phys. 110 6158

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15

    Google Scholar Pub Med

    Slater J C 1964 J. Chem. Phys. 41 3199

    Google Scholar Pub Med

    Yang C, Wang S, Chen W, Zhang Y, Guo F, Zhou Y, Wang J and Han H 2023 Chem. Eur. J. 29 e202301677

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(194) PDF downloads(1) Cited by(0)

Access History

Light emission from multiple self-trapped excitons in one-dimensional Ag-based ternary halides

Fund Project: 

Abstract: Ternary metal halides based on Cu(I) and Ag(I) have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties, low toxicity, and robust stability. While the self-trapped excitons (STEs) emission mechanisms of Cu(I) halides are well understood, the STEs in Ag(I) halides remain less thoroughly explored. This study explores the STE emission efficiency within the $A_{2}$Ag$X_{3}$ ($A = {\rm Rb}$, Cs; $X = {\rm Cl}$, Br, I) system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams. We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers. Moreover, we investigate the impact of structural compactness on emission efficiency and find that the excessive electron-phonon coupling in this system can be reduced by increasing the structural compactness. The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs$_{2}$Ag$X_{3}$ and Rb$_{2}$Ag$X_{3}$ systems. These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials. The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094.

Reference (42)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return