2025 Volume 34 Issue 1
Article Contents

Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Kehan Wang(王柯涵), and Hong-Yang Ma(马鸿洋). 2025: Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform, Chinese Physics B, 34(1): 010305. doi: 10.1088/1674-1056/ad8a4b
Citation: Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Kehan Wang(王柯涵), and Hong-Yang Ma(马鸿洋). 2025: Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform, Chinese Physics B, 34(1): 010305. doi: 10.1088/1674-1056/ad8a4b

Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform

  • Received Date: 27/08/2024
    Accepted Date: 06/10/2024
  • Fund Project:

    Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF049), Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001), and the Key R&D Program of Shandong Province, China (Grant No. 2023CXGC010901).

  • In the field of Internet, an image is of great significance to information transmission. Meanwhile, how to ensure and improve its security has become the focus of international research. We combine DNA codec with quantum Arnold transform (QArT) to propose a new double encryption algorithm for quantum color images to improve the security and robustness of image encryption. First, we utilize the biological characteristics of DNA codecs to perform encoding and decoding operations on pixel color information in quantum color images, and achieve pixel-level diffusion. Second, we use QArT to scramble the position information of quantum images and use the operated image as the key matrix for quantum XOR operations. All quantum operations in this paper are reversible, so the decryption operation of the ciphertext image can be realized by the reverse operation of the encryption process. We conduct simulation experiments on encryption and decryption using three color images of "Monkey", "Flower", and "House". The experimental results show that the peak value and correlation of the encrypted images on the histogram have good similarity, and the average normalized pixel change rate (NPCR) of RGB three-channel is 99.61%, the average uniform average change intensity (UACI) is 33.41%, and the average information entropy is about 7.9992. In addition, the robustness of the proposed algorithm is verified by the simulation of noise interference in the actual scenario.
  • 加载中
  • Nagarajan S M, Deverajan G G, Kumaran U, Thirunavukkarasan M, Alshehri M D and Alkhalaf S 2021 IEEE Transactions on Industrial Informatics 18 12

    Google Scholar Pub Med

    Chen H C, Guo J I, Huang L C and Yen J C 2003 EURASIP Journal on Advances in Signal Processing 2003 902741

    Google Scholar Pub Med

    Chinnasamy C 2018 Ingenierie des Systemes d’Information 23 6

    Google Scholar Pub Med

    Pourasad Y, Ranjbarzadeh R and Mardani A 2021 Entropy 23 341

    Google Scholar Pub Med

    Arab A, Rostami M J and Ghavami B 2019 The Journal of Supercomputing 75 6663

    Google Scholar Pub Med

    Zhang Y 2020 Information Sciences 520 177

    Google Scholar Pub Med

    Parvaz R and Zarebnia M 2018 Opt. Laser Technol. 101 30

    Google Scholar Pub Med

    Xu Q, Sun K, He S and Zhu C 2020 Opt. Lasers Eng. 134 106178

    Google Scholar Pub Med

    Wang Z, XuMand Zhang Y 2022 Arch. Comput. Methods Eng. 29 737

    Google Scholar Pub Med

    Yao X W, Wang H, Liao Z, Chen M C, Pan J, Li J, Zhang K C, Lin X C, Wang Z H, Luo Z H, Zheng W Q, Li J D, Zhao M S, Peng X H and Suter D 2017 Phys. Rev. X 7 031041

    Google Scholar Pub Med

    Cai Y, Lu X and Jiang N 2018 Chin. J. Electron. 27 718

    Google Scholar Pub Med

    Zhao R, Cheng T, Wang R, Fan X and Ma H 2024 New J. Phys. 26 053016

    Google Scholar Pub Med

    Wang H, Xue Y, Qu Y, Mu, X and Ma H 2022 npj Quantum Information 8 134

    Google Scholar Pub Med

    Adleman L M 1994 Science 266 1021

    Google Scholar Pub Med

    Chang W L, Guo M and Ho M S H 2005 IEEE Transactions on Nanobioscience 4 149

    Google Scholar Pub Med

    Ning K 2012 Computers & Electrical Engineering 38 1240

    Google Scholar Pub Med

    Huang X and Ye G 2018 Multimedia Tools and Applications 72 57

    Google Scholar Pub Med

    Ur Rehman A, Liao X, Ashraf R, Ullah S, andWang H 2018 Optik 159 348

    Google Scholar Pub Med

    Imre S 2014 Computers & Electrical Engineering 40 134

    Google Scholar Pub Med

    Gupta M,and Nene M J 2020 2020 IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI) pp. 1

    Google Scholar Pub Med

    Abura’ed N, Khan F S and Bhaskar H2017 ACM Computing Surveys (CSUR) 49 1

    Google Scholar Pub Med

    Farhi E and Neven H 2021 International Journal of Theoretical Physics 60 2930

    Google Scholar Pub Med

    Hu W W, Zhou R G, Luo J, Jiang S X and Luo G F 2021 Quantum Inf. Process. 19 1

    Google Scholar Pub Med

    Liu X, Xiao D, Huang W and Liu C 2019 IEEE Access 7 57188

    Google Scholar Pub Med

    Guo L, Du H and Huang D 2022 Quantum Inf. Process. 21 20

    Google Scholar Pub Med

    Le P Q, Dong F and Hirota K 2011 Quantum Inf. Process. 10 63

    Google Scholar Pub Med

    Zhang Y, Lu K, Gao Y and Wang M 2013 Quantum Inf. Process. 12 2833

    Google Scholar Pub Med

    Zhang Y, Lu K, Gao Y and Xu K 2013 Quantum Inf. Process. 12 3103

    Google Scholar Pub Med

    Sun B, Iliyasu A, Yan F, Dong F and Hirota K 2021 J. Adv. Comput. Intell. Intell. Inform 17 3

    Google Scholar Pub Med

    Li H S, Zhu Q, Zhou R G, Song L and Yang X J 2014 Quantum Inf. Process. 13 991

    Google Scholar Pub Med

    Hao W, Zhang T, Chen X and Zhou X 2023 Signal Processing 105 108890

    Google Scholar Pub Med

    Liu X 2023 Physica Scripta 98 115112

    Google Scholar Pub Med

    Zhu H H, Chen X B and Yang Y X 2021 Quantum Inf. Process. 20 315

    Google Scholar Pub Med

    Li H S, Li C, Chen X and Xia H Y 2018 International Journal of Theoretical Physics 57 3745

    Google Scholar Pub Med

    Jiang N, Wu W Y and Wang L 2014 Quantum Inf. Process. 13 1223

    Google Scholar Pub Med

    Jiang N, Wang L and Wu W Y 2014 International Journal of Theoretical Physics 53 2463

    Google Scholar Pub Med

    Jin C and Liu H 2017 Int. J. Netw. Secur 19 347

    Google Scholar Pub Med

    Zhao J, Zhang T, Jiang J, Fang T and Ma H 2022 Scientific Reports 12 14253

    Google Scholar Pub Med

    Zhu H, Chen Z and Leng T 2024 J. Appl. Phys. 135 014401

    Google Scholar Pub Med

    Wei X, Guo L, Zhang Q, Zhang J and Lian S2012 Journal of Systems and Software 85 290

    Google Scholar Pub Med

    Sharma N, Jain V and Mishra A 2018 Journal of Systems and Software 132 377

    Google Scholar Pub Med

    Gao J, Wang Y, Song Z and Wang S 2023 Entropy 25 865

    Google Scholar Pub Med

    Gong L H, He X T, Cheng S, Hua T X and Zhou N R 2016 International Journal of Theoretical Physics55 3234

    Google Scholar Pub Med

    Rajakumaran C and Kavitha R 2020 Multimedia Tools and Applications 79 23849

    Google Scholar Pub Med

    Abd El-Latif A A, Abd-El-Atty B and Talha M 2017 IEEE Access 6 1073

    Google Scholar Pub Med

    Abanda Y and Tiedeu A 2016 IET Image Processing 10 742

    Google Scholar Pub Med

    Li C and Yang X 2022 Optik 260 169042

    Google Scholar Pub Med

    Kumari M, Gupta S and Sardana P 2017 3D Research 8 37

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(215) PDF downloads(2) Cited by(0)

Access History

Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform

Fund Project: 

Abstract: In the field of Internet, an image is of great significance to information transmission. Meanwhile, how to ensure and improve its security has become the focus of international research. We combine DNA codec with quantum Arnold transform (QArT) to propose a new double encryption algorithm for quantum color images to improve the security and robustness of image encryption. First, we utilize the biological characteristics of DNA codecs to perform encoding and decoding operations on pixel color information in quantum color images, and achieve pixel-level diffusion. Second, we use QArT to scramble the position information of quantum images and use the operated image as the key matrix for quantum XOR operations. All quantum operations in this paper are reversible, so the decryption operation of the ciphertext image can be realized by the reverse operation of the encryption process. We conduct simulation experiments on encryption and decryption using three color images of "Monkey", "Flower", and "House". The experimental results show that the peak value and correlation of the encrypted images on the histogram have good similarity, and the average normalized pixel change rate (NPCR) of RGB three-channel is 99.61%, the average uniform average change intensity (UACI) is 33.41%, and the average information entropy is about 7.9992. In addition, the robustness of the proposed algorithm is verified by the simulation of noise interference in the actual scenario.

Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return