2025 Volume 34 Issue 1
Article Contents

Bohan Zheng(郑博涵), Siyu Zhu(朱思宇), Xingping Zhou(周兴平), and Tong Liu(刘通). 2025: Classifying extended, localized and critical states in quasiperiodic lattices via unsupervised learning, Chinese Physics B, 34(1): 017103. doi: 10.1088/1674-1056/ad8cb9
Citation: Bohan Zheng(郑博涵), Siyu Zhu(朱思宇), Xingping Zhou(周兴平), and Tong Liu(刘通). 2025: Classifying extended, localized and critical states in quasiperiodic lattices via unsupervised learning, Chinese Physics B, 34(1): 017103. doi: 10.1088/1674-1056/ad8cb9

Classifying extended, localized and critical states in quasiperiodic lattices via unsupervised learning

  • Received Date: 31/05/2024
    Accepted Date: 19/10/2024
  • Fund Project:

    Project supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant Nos. NY223109, NY220119, and NY221055), China Postdoctoral Science Foundation (Grant No. 2022M721693), and the National Natural Science Foundation of China (Grant No. 12404365).

  • Classification of quantum phases is one of the most important areas of research in condensed matter physics. In this work, we obtain the phase diagram of one-dimensional quasiperiodic models via unsupervised learning. Firstly, we choose two advanced unsupervised learning algorithms, namely, density-based spatial clustering of applications with noise (DBSCAN) and ordering points to identify the clustering structure (OPTICS), to explore the distinct phases of the Aubry-André-Harper model and the quasiperiodic p-wave model. The unsupervised learning results match well with those obtained through traditional numerical diagonalization. Finally, we assess similarity across different algorithms and find that the highest degree of similarity between the results of unsupervised learning algorithms and those of traditional algorithms exceeds 98%. Our work sheds light on applications of unsupervised learning for phase classification.
  • 加载中
  • Anderson P W 1958 Phys. Rev. 109 1492

    Google Scholar Pub Med

    Segev M, Silberberg Y and Christodoulides D N 2013 Nat. Photon. 7 197

    Google Scholar Pub Med

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N and Silberberg Y 2009 Phys. Rev. Lett. 103 013901

    Google Scholar Pub Med

    Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895

    Google Scholar Pub Med

    Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673

    Google Scholar Pub Med

    Mott N 1987 J. Phys. C 20 3075

    Google Scholar Pub Med

    Soukoulis C M and Economou E N 1982 Phys. Rev. Lett. 48 1043

    Google Scholar Pub Med

    Buchler H P, Blatter G and ZwergerW2003 Phys. Rev. Lett. 90 130401

    Google Scholar Pub Med

    Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 18

    Google Scholar Pub Med

    Harper P G 1955 Proc. Phys. Soc. Sect. A 68 874

    Google Scholar Pub Med

    Liu T, Guo H, Pu Y and Longhi S 2020 Phys. Rev. B 102 024205

    Google Scholar Pub Med

    Xia X, Huang K, Wang S and Li X 2022 Phys. Rev. B 105 014207

    Google Scholar Pub Med

    Cai X 2022 Phys. Rev. B 106 214207

    Google Scholar Pub Med

    Zhou L and Han W 2021 Chin. Phys. B 30 100308

    Google Scholar Pub Med

    Wang L, Wang Z B and Chen S 2024 Phys. Rev. B 110 L060201

    Google Scholar Pub Med

    Liu Y, Jiang X P, Cao J and Chen S 2020 Phys. Rev. B 101 174205

    Google Scholar Pub Med

    Xu Z, Xia X and Chen S 2021 Phys. Rev. B 104 224204

    Google Scholar Pub Med

    Li S Z, Cheng E, Zhu S L and Li Z 2024 Phys. Rev. B 110 134203

    Google Scholar Pub Med

    Li S Z and Li Z 2024 Phys. Rev. B 110 L041102

    Google Scholar Pub Med

    Zhang D W, Chen Y L, Zhang G Q, Lang L J, Li Z and Zhu S L 2020 Phys. Rev. B 101 235150

    Google Scholar Pub Med

    Jiang S L, Liu Y and Lang L J 2023 Chin. Phys. B 32 097204

    Google Scholar Pub Med

    Wang Y, Xia X, Zhang L, Yao H, Chen S, You J, Zhou Q and Liu X J 2020 Phys. Rev. Lett. 125 196604

    Google Scholar Pub Med

    Zhou X C, Wang Y, Poon T F J, Zhou Q and Liu X J 2023 Phys. Rev. Lett. 131 176401

    Google Scholar Pub Med

    Biddle J and Das Sarma S 2010 Phys. Rev. Lett. 104 070601

    Google Scholar Pub Med

    Longhi S 2019 Phys. Rev. B 100 125157

    Google Scholar Pub Med

    Zhou L W 2024 Phys. Rev. B 109 024204

    Google Scholar Pub Med

    Zeng Q B, Yang Y B and Xu Y 2020 Phys. Rev. B 101 020201

    Google Scholar Pub Med

    Lin X, Chen X, Guo G C and Gong M 2023 Phys. Rev. B 108 174206

    Google Scholar Pub Med

    Lin X and Gong M 2024 Phys. Rev. A 109 033310

    Google Scholar Pub Med

    Jiang H, Lang L, Yang C, Zhu S L and Chen S 2019 Phys. Rev. B 100 054301

    Google Scholar Pub Med

    Beveridge C, Hart K, Cristani C R, Li X, Barbierato E and Hsu Y T 2024 arXiv:2407.06253 [cond-mat.dis-nn]

    Google Scholar Pub Med

    Vanoni C and Vitale V 2024 Phys. Rev. B 110 024204

    Google Scholar Pub Med

    Scheurer M S and Slager R J 2020 Phys. Rev. Lett. 124 226401

    Google Scholar Pub Med

    Hetényi B and Cengiz S 2022 Phys. Rev. B 106 195151

    Google Scholar Pub Med

    Liu T and Xia X 2024 Chin. Phys. Lett. 41 017102

    Google Scholar Pub Med

    Jordan M I and Mitchell T M 2015 Science 349 255

    Google Scholar Pub Med

    Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt- Maranto L and Zdeborová L 2019 Rev. Mod. Phys. 91 045002

    Google Scholar Pub Med

    Ma W, Liu Z, Kudyshev Z A, Boltasseva A, Cai W and Liu Y 2021 Nat. Photon. 15 77

    Google Scholar Pub Med

    Carrasquilla J and Torlai G 2021 PRX Quantum 2 040201

    Google Scholar Pub Med

    Lu S, Gao X and Duan L M 2019 Phys. Rev. B 99 155136

    Google Scholar Pub Med

    Schmitt M and Heyl M 2020 Phys. Rev. Lett. 125 100503

    Google Scholar Pub Med

    Gubernatis J E and Lookman T 2018 Phys. Rev. Materials 2 120301

    Google Scholar Pub Med

    Park S, Hwang Y and Yang B 2022 Phys. Rev. B 105 195115

    Google Scholar Pub Med

    Zhang Y and Kim E A 2017 Phys. Rev. Lett. 118 216401

    Google Scholar Pub Med

    Bai S C, Tang Y C and Ran S J 2022 Chin. Phys. Lett. 39 100701

    Google Scholar Pub Med

    Zhang P, Shen H and Zhai H 2018 Phys. Rev. Lett. 120 066401

    Google Scholar Pub Med

    Ellis K, Solar-Lezama A and Josh T 2015 Advances in Neural Information Processing Systems (Montreal: Neural Information Processing Systems Foundation) pp. 973-981

    Google Scholar Pub Med

    Venderley J, Khemani V and Kim E A 2018 Phys. Rev. Lett. 120 257204

    Google Scholar Pub Med

    Hsu Y T, Li X, Deng D L and Das Sarma S 2018 Phys. Rev. Lett. 121 245701

    Google Scholar Pub Med

    Ch’Ng K, Carrasquilla J, Melko R G and Khatami E 2017 Phys. Rev. X 7 031038

    Google Scholar Pub Med

    Hu W, Singh R R and Scalettar R T 2017 Phys. Rev. E 95 062122

    Google Scholar Pub Med

    Ahmed A, Nelson A, Raina A and Sharma A 2023 Phys. Rev. B 108 155128

    Google Scholar Pub Med

    Bai X D, Zhao J, Han Y Y, Zhao J C and Wang J G 2021 Phys. Rev. B 103 134203

    Google Scholar Pub Med

    Yao H, Khoudli A, Bresque L and Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405

    Google Scholar Pub Med

    Ester M, Kriegel H P, Sander J and Xu X W 1996 Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96) (Portland: AAAI Press) pp. 226-231

    Google Scholar Pub Med

    Ankerst M, Breunig M M, Kriegel H P and Sander J 1999 Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data (New York: Association for Computing Machinery) pp. 49-60

    Google Scholar Pub Med

    Lu Z, Xu Z and Zhang Y B 2022 Ann. Phys. (Berlin) 534 2200203

    Google Scholar Pub Med

    Wei X B, Wu L Q, Feng K W, Liu T and Zhang Y B 2024 Phys. Rev. A 109 023314

    Google Scholar Pub Med

    Lin X, Guo G C and Gong M 2023 arXiv:2311.08643 [cond-mat]

    Google Scholar Pub Med

    Liu T, Cheng S, Zhang R, Ruan R and Jiang H 2022 Chin. Phys. B 31 027101

    Google Scholar Pub Med

    Liu T, Xia X, Longhi S and Sanchez-Palencia L 2022 SciPost Phys. 12 027

    Google Scholar Pub Med

    Jiang X P, ZengWL, Hu Y Y and Pan L 2024 arXiv:2409.03591 [condmat]

    Google Scholar Pub Med

    Liu T, Cheng S, Guo H and Xianlong G 2021 Phys. Rev. B 103 104203

    Google Scholar Pub Med

    Wang J, Liu X J, Xianlong G and Hu H 2016 Phys. Rev. B 93 104504

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(551) PDF downloads(1) Cited by(0)

Access History

Classifying extended, localized and critical states in quasiperiodic lattices via unsupervised learning

Fund Project: 

Abstract: Classification of quantum phases is one of the most important areas of research in condensed matter physics. In this work, we obtain the phase diagram of one-dimensional quasiperiodic models via unsupervised learning. Firstly, we choose two advanced unsupervised learning algorithms, namely, density-based spatial clustering of applications with noise (DBSCAN) and ordering points to identify the clustering structure (OPTICS), to explore the distinct phases of the Aubry-André-Harper model and the quasiperiodic p-wave model. The unsupervised learning results match well with those obtained through traditional numerical diagonalization. Finally, we assess similarity across different algorithms and find that the highest degree of similarity between the results of unsupervised learning algorithms and those of traditional algorithms exceeds 98%. Our work sheds light on applications of unsupervised learning for phase classification.

Reference (64)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return