2025 Volume 34 Issue 1
Article Contents

Chen-Yan Zhang(张辰妍), Xin-He Dou(窦鑫河), Zhen Chen(陈震), Jing-Han Zhao(赵靖涵), Wei Sun(孙薇), Ze-Yu Fan(樊泽宇), Tao Zhang(张涛), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国). 2025: Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber, Chinese Physics B, 34(1): 014205. doi: 10.1088/1674-1056/ad8db3
Citation: Chen-Yan Zhang(张辰妍), Xin-He Dou(窦鑫河), Zhen Chen(陈震), Jing-Han Zhao(赵靖涵), Wei Sun(孙薇), Ze-Yu Fan(樊泽宇), Tao Zhang(张涛), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国). 2025: Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber, Chinese Physics B, 34(1): 014205. doi: 10.1088/1674-1056/ad8db3

Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber

  • Received Date: 24/09/2024
    Accepted Date: 20/10/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant No. 12164030), Young Science and Technology Talents of Inner Mongolia, China (Grant No. NJYT22101), the Central Government Guides Local Science, the Technology Development Fund Projects (Grant No. 2023ZY0005), and the Science and Technology Plan Projects of Inner Mongolia Autonomous Region of China (Grant No. 2023KYPT0012).

  • In the last few years, research on advanced ultrafast photonic devices has attracted great interest from laser physicists. As a semiconductor material with excellent nonlinear saturation absorption characteristics, GaAs has been used in solid-state and fiber lasers as a mode-locker. However, the pulse widths that have been reported in the searchable published literature are all long and the shortest is tens of picoseconds. Femtosecond pulse widths, desired for a variety of applications, have not yet been reported in GaAs-based pulsed lasers. In this work, we further explore the nonlinear characteristics of GaAs that has been magnetron sputtered onto the surface of a tapered fiber and its application in the generation of femtosecond lasing via effective dispersion optimization and nonlinearity management. With the enhanced interaction between evanescent waves and GaAs nanosheets, mode-locked soliton pulses as short as 830 fs are generated at repetition rates of 4.64 MHz. As far as we know, this is the first time that femtosecond-level pulses have been generated with a GaAs-based saturable absorber. In addition, soliton molecules, including in the dual-pulse state, are also realized under stronger pumping. This work demonstrates that GaAs-based photonic devices have good application prospects in effective polymorphous ultrashort pulsed laser generation.
  • 加载中
  • Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Prog. Quantum Electron. 71 100264

    Google Scholar Pub Med

    Han Y, Gao B, Wen H, Ma C, Huo J, Li Y, Zhou L, Li Q, Wu G and Liu L 2024 Light Sci. Appl. 13 101

    Google Scholar Pub Med

    Li L, Xue Z, Pang L H, Xiao X S, Yang H R, Zhang J N, Zhang Y M, Zhao Q Y and Liu W J 2024 Opt. Lett. 49 1293

    Google Scholar Pub Med

    Li L R, Li X H, Zhao Y, Feng J J, Zhang C X C X, Shi Y, Ge Y Q and Zhang Y N 2022 Nanotechnology 33 18

    Google Scholar Pub Med

    Han Y H, Li X H, Chen E C, An M Q, Song Z Y, Huang X Z, Liu X F, Wang Y S and Zhao W 2022 Adv. Opt. Mater. 10 2201034

    Google Scholar Pub Med

    Wang G, Baker-Murray A A and Blau W J 2019 Laser Photonics Rev. 13 1800282

    Google Scholar Pub Med

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077

    Google Scholar Pub Med

    Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S and Tang D 2012 Appl. Phys. Lett. 101 211106

    Google Scholar Pub Med

    Sun Z H, Jiang X T,Wen Q, LiWJ and Zhang H 2019 J. Mater. Chem. C 7 4662

    Google Scholar Pub Med

    Li P F, Chen Y, Yang T S, Wang Z Y, Lin H, Xu Y H and Li L 2017 ACS Appl. Mater. Interfaces 9 12759

    Google Scholar Pub Med

    Jiang X T, Li W J, Hai T, Yue R, Chen Z W, Lao C S, Ge Y Q, Xie G Q, Wen Q and Zhang H 2019 NPJ 2D Mater. Appl. 3 34

    Google Scholar Pub Med

    Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y, Mei L and Wang J 2014 Adv. Mater. 26 3538

    Google Scholar Pub Med

    Sotor J, Sobon J, Kowalczyk M, Macherzynski W, Paletko P and Abramski K M 2015 Opt. Lett. 40 3885

    Google Scholar Pub Med

    Wang J L, Wang X L, Lei J J, Ma M Y, Wang C, Ge Y Q and Wei Z Y 2020 Nanophotonics 9 2315

    Google Scholar Pub Med

    Liu X M, Popa D and Akhmediev N 2019 Phys. Rev. Lett. 123 093901

    Google Scholar Pub Med

    Su X B, Shao F H, Hao H M, Liu H Q, Li S L, Dai D Y, Shang X J, Wang T F, Zhang Y, Yang C A, Xu Y Q, Ni H Q, Ding Y and Niu Z C 2023 Chin. Phys. B 32 098103

    Google Scholar Pub Med

    Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q and Liu W J 2023 Chin. Phys. B 32 054201

    Google Scholar Pub Med

    Jiang T, Yin K, Wang C, You J, Ouyang H, Miao R L, Zhang C X, Wei K, Li H, Chen H T, hang R Y, Zheng X, Xu Z J, Cheng X G and Zhang H 2020 Photonics Res. 8 78

    Google Scholar Pub Med

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y S, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666

    Google Scholar Pub Med

    Li L, Pang L, Zhao Q,Wang Y and LiuW2020 Nanophotonics 9 2569

    Google Scholar Pub Med

    Paajaste J, Suomalainen S, Koskinen R, Härkönen A, Steinmeyer G and Guina M 2012 Phys. Stat. Solid. C 9 294

    Google Scholar Pub Med

    Liu X M and Pang M 2019 Laser Photonics Rev. 13 1800333

    Google Scholar Pub Med

    Ma H C, Wang Y X and Deng A P 2022 Chin. Phys. B 31 010201

    Google Scholar Pub Med

    Milovanov Y, Skryshevsky V, Gavrilchenko I, Oksanich A, Pritchin S and Kogdas M 2019 J. Electron. Mater. 48 2587

    Google Scholar Pub Med

    Lockwood D J, Schmuki P, Labbe H J and Fraser J W 1999 Physica E 4 102

    Google Scholar Pub Med

    Akinlami J O and Ashamu A O 2013 JOS 34 032002

    Google Scholar Pub Med

    Kajava T T and Gaeta A L 1996 Opt. Lett. 21 1244

    Google Scholar Pub Med

    Scurtescu C, Zhang Z Y, Alcock J, Fedosejevs R, Blumin M, Saveliev I, Yang S, Ruda H and Tsui Y Y 2007 Appl. Phys. B: Lasers Opt. 87 671

    Google Scholar Pub Med

    Li D C, Zhao S Z, Li G Q and Yang K J 2010 Optik 121 478

    Google Scholar Pub Med

    Li P, Wang Q P, Zhang X Y, Wang Y R, Li S C, He J L and Lu X Q 2001 Opt. Laser Technol. 33 383

    Google Scholar Pub Med

    Yang S, Yang Y Y, Zhang L, Huang J Y, Bai Y R and Lin X C 2019 Optik 178 1218

    Google Scholar Pub Med

    Li J, Pan Y B, Zeng Y P, Liu W B, Jiang B X and Guo J K 2013 Int. J. Refract Met. H 39 44

    Google Scholar Pub Med

    Engelhard M H, Lyubinetsky A and Baer D R 2016 Surf. Sci. Spectra 23 83

    Google Scholar Pub Med

    Du J, Wang Q K, Jiang G B, Xu C W, Zhao C J, Xiang Y J, Chen Y, Wen S C and Zhang H 2014 Sci. Rep. 4 6346

    Google Scholar Pub Med

    Olivier M and Piché M 2019 Opt. Express 17 405

    Google Scholar Pub Med

    Chen Z K, Zhou J and Zhao J Q 2023 IEEE J. Quantum Electron. 59 1600207

    Google Scholar Pub Med

    Liu R M, Wang T S, Ma W Z, Zhao D S, Lin P, Wang F R and Zhao Y W 2019 IEEE Photonic Tech. Lett. 31 341

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(211) PDF downloads(2) Cited by(0)

Access History

Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber

Fund Project: 

Abstract: In the last few years, research on advanced ultrafast photonic devices has attracted great interest from laser physicists. As a semiconductor material with excellent nonlinear saturation absorption characteristics, GaAs has been used in solid-state and fiber lasers as a mode-locker. However, the pulse widths that have been reported in the searchable published literature are all long and the shortest is tens of picoseconds. Femtosecond pulse widths, desired for a variety of applications, have not yet been reported in GaAs-based pulsed lasers. In this work, we further explore the nonlinear characteristics of GaAs that has been magnetron sputtered onto the surface of a tapered fiber and its application in the generation of femtosecond lasing via effective dispersion optimization and nonlinearity management. With the enhanced interaction between evanescent waves and GaAs nanosheets, mode-locked soliton pulses as short as 830 fs are generated at repetition rates of 4.64 MHz. As far as we know, this is the first time that femtosecond-level pulses have been generated with a GaAs-based saturable absorber. In addition, soliton molecules, including in the dual-pulse state, are also realized under stronger pumping. This work demonstrates that GaAs-based photonic devices have good application prospects in effective polymorphous ultrashort pulsed laser generation.

Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return