2025 Volume 34 Issue 1
Article Contents

Kangyao Sun(孙康瑶), Yuancheng Fan(樊元成)†, Zhehao Ye(叶哲浩), Jiahui Li(李嘉荟), Quanhong Fu(付全红), Yali Zeng(曾雅丽), and Fuli Zhang(张富利)‡. 2025: High-efficiency wide-angle anomalous refraction with acoustic metagrating, Chinese Physics B, 34(1): 014302. doi: 10.1088/1674-1056/ad8db6
Citation: Kangyao Sun(孙康瑶), Yuancheng Fan(樊元成)†, Zhehao Ye(叶哲浩), Jiahui Li(李嘉荟), Quanhong Fu(付全红), Yali Zeng(曾雅丽), and Fuli Zhang(张富利)‡. 2025: High-efficiency wide-angle anomalous refraction with acoustic metagrating, Chinese Physics B, 34(1): 014302. doi: 10.1088/1674-1056/ad8db6

High-efficiency wide-angle anomalous refraction with acoustic metagrating

  • Received Date: 30/09/2024
    Accepted Date: 28/10/2024
  • Fund Project:

    Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFB3811400 and 2022YFB3806000), the National Natural Science Foundation of China (Grant No. 12074314), the Science and Technology New Star Program of Shaanxi Province, China (Grant No. 2023KJXX-148), and the Fundamental Research Funds for the Central Universities.

  • The emergent metagrating, with its unique and flexible beam shaping capabilities, offers new paths to efficient modulation of acoustic waves. In this work, an acoustic metagrating is demonstrated for high-efficiency and wide-angle anomalous refraction. It is shown that the normal reflection and transmission can be totally suppressed by properly modulating the amplitude and phase characteristics of the metagrating supercells for high-efficiency anomalous refraction. The anomalous refraction behavior is achieved in the wide range of incident angles from 28$^\circ$ to 78$^\circ$, and the efficiency of $-1$st order diffraction is higher than 90% by finely designing the metagrating structure. The anomalous refraction behaviors are verified experimentally at incidence angle of 28$^\circ$, 45$^\circ$, and 78$^\circ$, respectively. The demonstrated metagrating is anticipated to possess efficient wide-angle composite wavefront engineering applications in such fields as communications.
  • 加载中
  • Yu N, Genevet P, KatsMA, Aieta F, Tetienne J, Capasso F and Gaburro Z 2011 Science 334 333

    Google Scholar Pub Med

    Wen Y and Zhou J 2019 Mater. Today 23 37

    Google Scholar Pub Med

    Assouar B, Liang B, Wu Y, Li Y, Cheng J and Jing Y 2018 Nat. Rev. Mater. 3 460

    Google Scholar Pub Med

    Tian Z, Shen C, Li J, Reit E, Gu Y, Fu H, Cummer S A and Huang T J 2019 Adv. Funct. Mater. 29 1808489

    Google Scholar Pub Med

    Quan L and Alù A 2019 Phys. Rev. Lett. 123 244303

    Google Scholar Pub Med

    Zhu Y F, Fan X D, Liang B, Cheng J C and Jing Y 2017 Phys. Rev. X 7 021034

    Google Scholar Pub Med

    Gerard N J R K, Cui H, Shen C, Xie Y, Cummer S, Zheng X and Jing Y 2019 Appl. Phys. Lett. 114 231902

    Google Scholar Pub Med

    Sun K, Zhang F, Chen S, Fu Q, Zeng Y and Fan Y 2024 iScience 27 110504

    Google Scholar Pub Med

    Zhou H, Fu W, Wang Y, Wang Y, Laude V and Zhang C 2021 Mater. Des. 199 109414

    Google Scholar Pub Med

    Tian Y, Wei Q, Cheng Y and Liu X 2017 Appl. Phys. Lett. 110 191901

    Google Scholar Pub Med

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J and Sheng P 2012 Nat. Commun. 3 756

    Google Scholar Pub Med

    Han C, Fan S, Li C, Chen L Q, Yang T and Qiu C W 2024 Adv. Mater. 36 2311350

    Google Scholar Pub Med

    Zhou M Q, Li Z X, Li Y,Wang Y C, Zhang J, Chen D D, Quan Y, Yang Y T and Fei C L 2024 Chin. Phys. B 33 014303

    Google Scholar Pub Med

    He J, Yu S, Jiang X and Ta D 2024 Chin. Phys. B 33 054301

    Google Scholar Pub Med

    Huang S, Zhou Z, Li D, Liu T, Wang X, Zhu J and Li Y 2020 Sci. Bull. 65 373

    Google Scholar Pub Med

    Wang W, Tan Y, Liang B, Ma G, Wang S and Cheng J 2021 Phys. Rev. B 104 174301

    Google Scholar Pub Med

    Zhang H, Wang Q, Fink M and Ma G 2024 Nat. Commun. 15 1270

    Google Scholar Pub Med

    Qi H B, Fan S W, Jiang M, Tang X L and Wang Y S 2024 Extrem. Mech. Lett. 67 102120

    Google Scholar Pub Med

    Zhao J, Li B W, Chen Z and Qiu C 2013 Appl. Phys. Lett. 103 151604

    Google Scholar Pub Med

    Zhou Y, Mao C, Gershnabel E, Chen M and Fan J A 2024 Laser Photon. Rev. 18 2300988

    Google Scholar Pub Med

    Liu W, Li Z, Cheng H, Tang C, Li J, Zhang S, Chen S and Tian J 2018 Adv. Mater. 30 1706368

    Google Scholar Pub Med

    Ren J and Hou Z 2024 Phys. Rev. Appl. 22 014040

    Google Scholar Pub Med

    Tang S, Ren B, Feng Y, Song J and Jiang Y 2021 Appl. Phys. Lett. 119 071907

    Google Scholar Pub Med

    Estakhri N M and Alù A 2016 Phys. Rev. X 6 041008

    Google Scholar Pub Med

    Díaz-Rubio A and Tretyakov S A 2017 Phys. Rev. B 96 125409

    Google Scholar Pub Med

    Sieck C F, Alù A and Haberman M R 2017 Phys. Rev. B 96 104303

    Google Scholar Pub Med

    Muhlestein M B, Sieck C F, Wilson P S and Haberman M R 2017 Nat. Commun. 8 15625

    Google Scholar Pub Med

    Li J, Shen C, Díaz-Rubio A, Tretyakov S A and Cummer S A 2018 Nat. Commun. 9 1342

    Google Scholar Pub Med

    Neder V, Ra’di Y, Alù A and Polman A 2019 ACS Photon. 6 1010

    Google Scholar Pub Med

    Ra’di Y and Alù A 2018 ACS Photon. 5 1779

    Google Scholar Pub Med

    Qian J, Xia J P, Sun H X, Wang Y, Ge Y, Yuan S Q, Yang Y H, Liu X J and Zhang B L 2020 Adv. Mater. Technol. 5 2000542

    Google Scholar Pub Med

    Cao J, Ma H, Xie S, Li J, Li Y and Cheng Q 2024 Phys. Rev. Appl. 21 034015

    Google Scholar Pub Med

    Tan Z, Yi J, Ratni B and Burokur S N 2024 Phys. Rev. Appl. 21 024009

    Google Scholar Pub Med

    Wang Y H, Cheng Y and Liu X J 2019 Sci. Rep. 9 7271

    Google Scholar Pub Med

    Song A, Sun C, Xiang Y and Xuan F Z 2022 Appl. Phys. Express 15 024002

    Google Scholar Pub Med

    Fu Y Y, Cao Y Y and Xu Y D 2019 Appl. Phys. Lett. 114 053502

    Google Scholar Pub Med

    Jin Y, Fang X, Li Y and Torrent D 2019 Phys. Rev. Appl. 11 011004

    Google Scholar Pub Med

    Quan J, Sun B, Fu Y, Gao L and Xu Y 2024 Chin. Phys. Lett. 41 014301

    Google Scholar Pub Med

    Fu Y Y, Shen C, Cao Y Y, Gao L, Chen H Y, Chan C T, Cummer S A and Xu Y D 2019 Nat. Commun. 10 2326

    Google Scholar Pub Med

    Zou H Y, Ge Y, Zhao K Q, Lu Y J, Si Q R, Yuan S Q, Chen H, Sun H X, Yang Y and Zhang B 2024 Adv. Mater. 36 2401738

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(242) PDF downloads(4) Cited by(0)

Access History

High-efficiency wide-angle anomalous refraction with acoustic metagrating

Fund Project: 

Abstract: The emergent metagrating, with its unique and flexible beam shaping capabilities, offers new paths to efficient modulation of acoustic waves. In this work, an acoustic metagrating is demonstrated for high-efficiency and wide-angle anomalous refraction. It is shown that the normal reflection and transmission can be totally suppressed by properly modulating the amplitude and phase characteristics of the metagrating supercells for high-efficiency anomalous refraction. The anomalous refraction behavior is achieved in the wide range of incident angles from 28$^\circ$ to 78$^\circ$, and the efficiency of $-1$st order diffraction is higher than 90% by finely designing the metagrating structure. The anomalous refraction behaviors are verified experimentally at incidence angle of 28$^\circ$, 45$^\circ$, and 78$^\circ$, respectively. The demonstrated metagrating is anticipated to possess efficient wide-angle composite wavefront engineering applications in such fields as communications.

Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return