2025 Volume 34 Issue 1
Article Contents

Chuanqi Shi(施川奇), Dawei Yuan(袁大伟), Wei Sun(孙伟), Yapeng Zhang(张雅芃), Zhijie Qiu(邱志杰), Huigang Wei(魏会冈), Zhe Zhang(张喆), Xiaohui Yuan(远晓辉), and Gang Zhao(赵刚). 2025: Observation of Weibel magnetic fields in laser-produced interpenetrating flows, Chinese Physics B, 34(1): 015203. doi: 10.1088/1674-1056/ad94e4
Citation: Chuanqi Shi(施川奇), Dawei Yuan(袁大伟), Wei Sun(孙伟), Yapeng Zhang(张雅芃), Zhijie Qiu(邱志杰), Huigang Wei(魏会冈), Zhe Zhang(张喆), Xiaohui Yuan(远晓辉), and Gang Zhao(赵刚). 2025: Observation of Weibel magnetic fields in laser-produced interpenetrating flows, Chinese Physics B, 34(1): 015203. doi: 10.1088/1674-1056/ad94e4

Observation of Weibel magnetic fields in laser-produced interpenetrating flows

  • Received Date: 01/10/2024
    Accepted Date: 14/11/2024
  • Fund Project:

    We thank the staff of the Shengguang-II laser facility. Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1603200 and 2022YFA1603204), the Fund from the Chinese Academy of Sciences Youth Interdisciplinary Team (Grant No. JCTD-2022-05), the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 11873061 and 12473099), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25030500, XDA25010100, and XDA25030200).

  • Weibel instability is a promising candidate mechanism for collisionless shock formation in astrophysical systems. Capturing the underlying physics of Weibel instability will help us to understand the astrophysical shock formation, magnetic field generation and amplification, particle acceleration, and so on. Laboratory astrophysics, provides a new way to study these microphysics in controlled conditions. At Shenguang-II laser facility, the interpenetrating plasma flows are generated by eight laser beams irradiating a pair of opposing foils to mimic the supernova explosion and the ejecta sweeping up the surrounding medium. Evolution of collisionless interpenetrating plasma flows is observed using optical diagnostics. Filamentary structures appear in the interaction region and the associated magnetic strength is measured about 40 T. Theoretical analysis and simulations indicate that these characteristics are induced by nonlinear Weibel instability.
  • 加载中
  • Medvedev M V 2007 Astrophys. Space Sci. 307 245

    Google Scholar Pub Med

    Jikei T, Amano T and Matsumoto Y 2024 Astrophys. J. 961 157

    Google Scholar Pub Med

    Bohdan A, Pohl M, Niemiec J, Vafin S, Matsumoto Y, Amano T and Hoshino M 2020 Astrophys. J. 893 6

    Google Scholar Pub Med

    Bamba A, Yamazaki R, UenoMand Koyama K 2003 Astrophys. J. 589 827

    Google Scholar Pub Med

    Meier P, Glassmeier K H and Motschmann U 2016 Ann. Geophys. 34 691

    Google Scholar Pub Med

    Lyubarsky Y and Eichler D 2006 Astrophys. J. 647 1250

    Google Scholar Pub Med

    Nishikawa K I, Hardee P E, Hededal C B and Fishman G J 2006 Astrophys. J. 642 1267

    Google Scholar Pub Med

    Nishikawa K I, Hededal C B, Hardee P E, Fishman G J, Kouveliotou C and Mizuno Y 2007 Astrophys. Space Sci. 307 319

    Google Scholar Pub Med

    Medvedev M V, Silva L O and Kamionkowski M 2006 Astrophys. J. 642 L1

    Google Scholar Pub Med

    Ryutov D, Drake R P, Kane J, Liang E, Remington B A and Wood- Vasey W M 1999 Astrophys. J. 518 821

    Google Scholar Pub Med

    Remington B A, Arnett D, Paul R, Drake R P and Takabe H 1999 Science 284 1488

    Google Scholar Pub Med

    Takabe H, Kato T N, Sakawa Y, et al. 2008 Plasma Phys. Control. Fusion 50 124057

    Google Scholar Pub Med

    Ahmed H, Dieckmann M E, Romagnani L, Doria D, Sarri G, Cerchez M, Ianni E, Kourakis I, Giesecke A L, Notley M, Prasad R, Quinn K, Willi O and Borghesi M 2013 Phys. Rev. Lett. 110 205001

    Google Scholar Pub Med

    Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Löwenbrück K, Mackinnon A J, Patel P, Pretzler G, Toncian T and Willi O 2008 Phys. Rev. Lett. 110 025044

    Google Scholar Pub Med

    Morita T, Sakawa Y, Kuramitsu Y, Dono S, Aoki H, Tanji H, Kato T N, Li Y T, Zhang Y, Liu X, Zhong J Y, Takabe H and Zhang J 2010 Phys. Plasmas 17 122702

    Google Scholar Pub Med

    Kuramitsu Y, Sakawa Y, Morita T, Gregory C D, Waugh J N, Dono S, Aoki H, Tanji H, Koenig M, Woolsey N and Takabe H 2011 Phys. Rev. Lett. 106 175002

    Google Scholar Pub Med

    Yuan D W, Li Y T, Liu M, et al. 2017 Sci. Rep. 7 42915

    Google Scholar Pub Med

    Fox W, Fiksel G, Bhattacharjee A, Chang P Y, Germaschewski K, Hu S X and Nilson P M 2013 Phys. Rev. Lett. 111 225002

    Google Scholar Pub Med

    Park H S, Huntington C M, Fiuza F, et al. 2015 Phys. Plasmas 22 056311

    Google Scholar Pub Med

    Yuan D W, Lei Z, Wei, H G, Zhang Z, Zhong J Y, Li Y F, Ping Y L, Zhang Y H, Li Y T, Wang F L, Liang G Y, Qiao B, Fu C B, Liu H Y, Zhang P Z, Zhu J Q, Zhao G and Zhang J 2024 Nat. Commun. 15 5897

    Google Scholar Pub Med

    Manuel M J E, Adams M B P, Ghosh S, Beg F N, Bolaños S, Huntington C M, Jonnalagadda R, Kawahito D, Pollock B B, Remington B A, Ross J S, Ryutov D D, Sio H, Swadling G F, Tzeferacos P and Park H S 2022 Phys. Rev. E 106 055205

    Google Scholar Pub Med

    Spitzer L and Seeger R J 1963 Am. J. Phys. 31 890

    Google Scholar Pub Med

    Kato T N and Takabe H 2010 Phys. Plasmas 17 032114

    Google Scholar Pub Med

    Kato T N 2005 Phys. Plasmas 12 080705

    Google Scholar Pub Med

    Ruyer C, Gremillet L, Debayle A and Bonnaud G 2015 Phys. Plasmas 22 032102

    Google Scholar Pub Med

    Park H S, Ryutov D D, Ross J S, et al. 2012 High Energy Density Phys. 8 38

    Google Scholar Pub Med

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, LuW, Ren C, MoriW B, Deng S, Lee S, Katsouleas T and Adam J C 2002 Lect. Notes Comp. Sci. 2331 342

    Google Scholar Pub Med

    Ryutov D D, Kugland N L, Park H S, Plechaty C, Remington B A and Ross J S 2012 Plasma Phys. Control. Fusion 54 105021

    Google Scholar Pub Med

    Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(186) PDF downloads(1) Cited by(0)

Access History

Observation of Weibel magnetic fields in laser-produced interpenetrating flows

Fund Project: 

Abstract: Weibel instability is a promising candidate mechanism for collisionless shock formation in astrophysical systems. Capturing the underlying physics of Weibel instability will help us to understand the astrophysical shock formation, magnetic field generation and amplification, particle acceleration, and so on. Laboratory astrophysics, provides a new way to study these microphysics in controlled conditions. At Shenguang-II laser facility, the interpenetrating plasma flows are generated by eight laser beams irradiating a pair of opposing foils to mimic the supernova explosion and the ejecta sweeping up the surrounding medium. Evolution of collisionless interpenetrating plasma flows is observed using optical diagnostics. Filamentary structures appear in the interaction region and the associated magnetic strength is measured about 40 T. Theoretical analysis and simulations indicate that these characteristics are induced by nonlinear Weibel instability.

Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return