2025 Volume 34 Issue 1
Article Contents

Yu Meng(蒙宇), Shuya Wang(王淑雅), Xibiao Ren(任锡标), Han Xue(薛涵), Xuejun Yue(岳学军), Chuanhong Jin(金传洪), Shanggang Lin(林上港), and Fang Lin(林芳). 2025: Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS2 in high-resolution transmission electron microscopy, Chinese Physics B, 34(1): 016802. doi: 10.1088/1674-1056/ad9ba3
Citation: Yu Meng(蒙宇), Shuya Wang(王淑雅), Xibiao Ren(任锡标), Han Xue(薛涵), Xuejun Yue(岳学军), Chuanhong Jin(金传洪), Shanggang Lin(林上港), and Fang Lin(林芳). 2025: Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS2 in high-resolution transmission electron microscopy, Chinese Physics B, 34(1): 016802. doi: 10.1088/1674-1056/ad9ba3

Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS2 in high-resolution transmission electron microscopy

  • Received Date: 01/10/2024
    Accepted Date: 01/11/2024
    Available Online: 20/01/2025
  • Fund Project:

    F. Lin acknowledges financial support from the National Natural Science Foundation of China (Grant No. 61971201).

  • High-resolution transmission electron microscopy (HRTEM) promises rapid atomic-scale dynamic structure imaging. Yet, the precision limitations of aberration parameters and the challenge of eliminating aberrations in $Cs$-corrected transmission electron microscopy constrain resolution. A machine learning algorithm is developed to determine the aberration parameters with higher precision from small, lattice-periodic crystal images. The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide (MoS$_{2}$) monolayer with 25 variables (14 aberrations) resolved in wide ranges. Using these measured parameters, the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS$_{2}$ monolayers. The images were acquired due to the unexpected movement of the specimen holder. Four-dimensional data extraction reveals time-varying atomic structures and ripple. In particular, the atomic evolution of the sulfur-vacancy point and line defects, as well as the edge structure near the amorphous, is visualized as the resolution has been improved from about 1.75 Å to 0.9 Å. This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.

  • 加载中
  • Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033

    Google Scholar Pub Med

    Shanmugam V, Mensah R A, Babu K, Gawusu S, Chanda A, Tu Y, Neisiany R E, Försth M, Sas G and Das O 2022 Part. Syst. Charact. 39 2200031

    Google Scholar Pub Med

    Yang S J, Choi M Y and Kim C J 2023 Adv. Mater. 35 2203425

    Google Scholar Pub Med

    Rehman M U, Hua C Q and Lu Y H 2020 Chin. Phys. B 29 057304

    Google Scholar Pub Med

    Luo R, Gao M, Wang C, Zhu J, Guzman R and Zhou W 2024 Adv. Funct. Mater. 34 2307625

    Google Scholar Pub Med

    Zhao X, Fu D, Ding Z, Zhang Y,Wan D, Tan S J, Chen Z, Leng K, Dan J and Fu W 2018 Nano Lett. 18 482

    Google Scholar Pub Med

    Tai K L, Huang C W, Cai R F, Huang G M, Tseng Y T, Chen J and Wu W W 2020 Small 16 1905516

    Google Scholar Pub Med

    Mendes R G, Pang J, Bachmatiuk A, Ta H Q, Zhao L, Gemming T, Fu L, Liu Z and Rümmeli M H 2019 ACS Nano 13 978

    Google Scholar Pub Med

    Van Dyck D, Jinschek J R and Chen F R 2012 Nature 486 243

    Google Scholar Pub Med

    Chang S L, Dwyer C, Barthel J, Boothroyd C B and Dunin-Borkowski R E 2016 Ultramicroscopy 161 90

    Google Scholar Pub Med

    Lin Y, Dumcenco D O, Huang Y and Suenaga K 2014 Nat. Nanotechnol. 9 391

    Google Scholar Pub Med

    Robinson A W, Wells J, Moshtaghpour A, Nicholls D, Huang C, Velazco-Torrejon A, Nicotra G, Kirkland A I and Browning N D 2024 Chin. Phys. B 33 116804

    Google Scholar Pub Med

    Segawa Y, Yamazaki K, Yamasaki J and Gohara K 2021 Nanoscale 13 5847

    Google Scholar Pub Med

    Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C, Crommie M F, Cohen M L and Louie S G 2009 Science 323 1705

    Google Scholar Pub Med

    Warner J H, Lee G, He K, Robertson A W, Yoon E and Kirkland A I 2013 ACS Nano 7 9860

    Google Scholar Pub Med

    Li J, Hu C,Wu H, Liu Z, Cheng S, ZhangW, Shu H and Chang H 2016 Cryst. Growth Des. 16 7094

    Google Scholar Pub Med

    Robertson A W, Lee G, He K, Gong C, Chen Q, Yoon E, Kirkland A I and Warner J H 2015 ACS Nano 9 11599

    Google Scholar Pub Med

    Wang S, Lee G D, Lee S, Yoon E and Warner J H 2016 ACS Nano 10 5419

    Google Scholar Pub Med

    Coene W, Thust A, De Beeck M O and Van Dyck D 1996 Ultramicroscopy 64 109

    Google Scholar Pub Med

    Wang Z, Byun J, Lee S, Seo J, Park B, Kim J C, Jeong H Y, Bang J, Lee J and Oh S H 2022 Nat. Commun. 13 5616

    Google Scholar Pub Med

    Mohn M J, Biskupek J, Lee Z, Rose H and Kaiser U 2020 Ultramicroscopy 219 113119

    Google Scholar Pub Med

    Lehtinen O, Geiger D, Lee Z, Whitwick M B, Chen M, Kis A and Kaiser U 2015 Ultramicroscopy 151 130

    Google Scholar Pub Med

    Lin F, Jian J, Ye L and Jin C 2015 Microscopy 64 311

    Google Scholar Pub Med

    Uhlemann S and Haider M 1998 Ultramicroscopy 72 109

    Google Scholar Pub Med

    Zemlin F, Weiss K, Schiske P, Kunath W and Herrmann K 1978 Ultramicroscopy 3 49

    Google Scholar Pub Med

    Lin F, Ren X B, ZhouWP, Zhang L Y, Xiao Y, Zhang Q, Xu H T, Li H and Jin C H 2018 Micron 114 23

    Google Scholar Pub Med

    Zemlin J and Zemlin F 2002 Ultramicroscopy 93 77

    Google Scholar Pub Med

    Hetherington C 2004 Mater. Today 7 50

    Google Scholar Pub Med

    Meyer R R, Kirkland A I and Saxton W O 2002 Ultramicroscopy 92 89

    Google Scholar Pub Med

    Kirkland A I, Meyer R R and Chang L S 2006 Microsc. Microanal. 12 461

    Google Scholar Pub Med

    Kirkland A I and Meyer R R 2004 Microsc. Microanal. 10 401

    Google Scholar Pub Med

    Barthel J and Thust A 2010 Ultramicroscopy 111 27

    Google Scholar Pub Med

    Vargas J, Otón J, Marabini R, Jonic S, de La Rosa-Trevín J M, Carazo and Sorzano C 2013 J. Struct. Biol. 181 136

    Google Scholar Pub Med

    Vulović M, Franken E, Ravelli R B, van Vliet L J and Rieger B 2012 Ultramicroscopy 116 115

    Google Scholar Pub Med

    Huang Z, Baldwin P R, Mullapudi S and Penczek P A 2003 J. Struct. Biol. 144 79

    Google Scholar Pub Med

    Biskupek J, Hartel P, Haider M and Kaiser U 2012 Ultramicroscopy 116 1

    Google Scholar Pub Med

    Ophus C, Rasool H I, Linck M, Zettl A and Ciston J 2016 Advanced Structural and Chemical Imaging 2 1

    Google Scholar Pub Med

    Coene W, Janssen G, de Beeck M O and Van Dyck D 1992 Phys. Rev. Lett. 69 3743

    Google Scholar Pub Med

    Allen L J, Mcbride W, O’Leary N L and Oxley M P 2004 Ultramicroscopy 100 91

    Google Scholar Pub Med

    Hsieh W, Chen F, Kai J and Kirkland A I 2004 Ultramicroscopy 98 99

    Google Scholar Pub Med

    Wu K, Yang B S, Xue W H, Sun D P, Ge B H and Wang Y M 2024 Chin. Phys. B 33 076802

    Google Scholar Pub Med

    Larsen M H L, Dahl F, Hansen L P, Barton B, Kisielowski C, Helveg S, Winther O, Hansen T W and Schiøtz J 2023 Ultramicroscopy 243 113641

    Google Scholar Pub Med

    Zhang X, Chen S, Wang S, Huang Y, Jin C and Lin F 2024 J. Microsc. 296 24

    Google Scholar Pub Med

    Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A 2015 Proceedings of the IEEE conference on computer vision and pattern recognition p. 1

    Google Scholar Pub Med

    Yuan P J, Wu K P, Chen S W, Zhang D L, Jin C H, Yao Y and Lin F 2022 J. Microsc. 287 93

    Google Scholar Pub Med

    Zhang Q, Zhang L Y, Jin C H, Wang Y M and Lin F 2019 Ultramicroscopy 202 114

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(206) PDF downloads(3) Cited by(0)

Access History

Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS2 in high-resolution transmission electron microscopy

Fund Project: 

Abstract: 

High-resolution transmission electron microscopy (HRTEM) promises rapid atomic-scale dynamic structure imaging. Yet, the precision limitations of aberration parameters and the challenge of eliminating aberrations in $Cs$-corrected transmission electron microscopy constrain resolution. A machine learning algorithm is developed to determine the aberration parameters with higher precision from small, lattice-periodic crystal images. The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide (MoS$_{2}$) monolayer with 25 variables (14 aberrations) resolved in wide ranges. Using these measured parameters, the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS$_{2}$ monolayers. The images were acquired due to the unexpected movement of the specimen holder. Four-dimensional data extraction reveals time-varying atomic structures and ripple. In particular, the atomic evolution of the sulfur-vacancy point and line defects, as well as the edge structure near the amorphous, is visualized as the resolution has been improved from about 1.75 Å to 0.9 Å. This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.

Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return