2025 Volume 34 Issue 5
Article Contents

Panpan Li(李盼盼), Yubing Li(李玉冰), Chang Su(苏畅), Zeyuan Dong(董则元), and Weijun Lin(林伟军). 2025: Sobolev space norm regularized full waveform inversion for ultrasound computed tomography, Chinese Physics B, 34(5): 054301. doi: 10.1088/1674-1056/adbbc0
Citation: Panpan Li(李盼盼), Yubing Li(李玉冰), Chang Su(苏畅), Zeyuan Dong(董则元), and Weijun Lin(林伟军). 2025: Sobolev space norm regularized full waveform inversion for ultrasound computed tomography, Chinese Physics B, 34(5): 054301. doi: 10.1088/1674-1056/adbbc0

Sobolev space norm regularized full waveform inversion for ultrasound computed tomography

  • Received Date: 31/12/2024
    Accepted Date: 06/02/2025
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant No. 12474461), the Basic and Frontier Exploration Project Independently Deployed by Institute of Acoustics, Chinese Academy of Sciences (Grant No. JCQY202402), and the Goal-Oriented Project Independently Deployed by Institute of Acoustics, Chinese Academy of Sciences (Grant No. MBDX202113).

  • PACS: 43.60.Lq; 43.80.Qf; 43.35.Wa; 87.63.dh

  • Full waveform inversion (FWI) is a complex data fitting process based on full wavefield modeling, aiming to quantitatively reconstruct unknown model parameters from partial waveform data with high-resolution. However, this process is highly nonlinear and ill-posed, therefore achieving high-resolution imaging of complex biological tissues within a limited number of iterations remains challenging. We propose a multiscale frequency-domain full waveform inversion (FDFWI) framework for ultrasound computed tomography (USCT) imaging of biological tissues, which innovatively incorporates Sobolev space norm regularization for enhancement of prior information. Specifically, we investigate the effect of different types of hyperparameter on the imaging quality, during which the regularization weight is dynamically adapted based on the ratio of the regularization term to the data fidelity term. This strategy reduces reliance on predefined hyperparameters, ensuring robust inversion performance. The inversion results from both numerical and experimental tests (i.e., numerical breast, thigh, and ex vivo pork-belly tissue) demonstrate the effectiveness of our regularized FWI strategy. These findings will contribute to the application of the FWI technique in quantitative imaging based on USCT and make USCT possible to be another high-resolution imaging method after x-ray computed tomography and magnetic resonance imaging.
  • 加载中
  • Huthwaite P and Simonetti F 2011 J. Acoust. Soc. Am. 130 1721

    Google Scholar Pub Med

    Fincke J, Zhang X, Shin B, Ely G and Anthony B W 2022 IEEE Trans. Med. Imaging. 41 502

    Google Scholar Pub Med

    Zhou C, Xu K and Ta D 2023 J. Acoust. Soc. Am. 154 279

    Google Scholar Pub Med

    Guasch L, Calderón Agudo O, Tang M X, Nachev P and Warner M 2020 NPJ Digit. Med. 3 28

    Google Scholar Pub Med

    Li Y B, Wang J, Su C, Lin W J, Wang X M and Luo Y 2023 Chin. Phys. B 32 014303

    Google Scholar Pub Med

    Na S and Wang L V 2021 Biomed. Opt. Express 12 4056

    Google Scholar Pub Med

    Pan Y, Qiang Y, Liang W, Huang W, Wang N, Wang X, Zhang Z, Qiu W and Zheng H 2024 Ultrasonics 143 107405

    Google Scholar Pub Med

    Mittendorff L, Young A and Sim J 2022 J. Med. Radiat. Sci. 69 250

    Google Scholar Pub Med

    Sanches J M, Laine A F and Suri J S 2012 Ultrasound Imaging: Advances and Applications (New York: Springer)

    Google Scholar Pub Med

    Azhari H 2012 Curr. Pharm. Biotechnol. 13 2104

    Google Scholar Pub Med

    Iyer A, Sun Z, Lambeth K, Singh M, Cleveland C and Sharma N 2024 IEEE Trans. Rob. 40 4322

    Google Scholar Pub Med

    Martin K 2010 Introduction to B-mode imaging (in: Hoskins P R, Martin K, Thrush A eds.) Diagnostic Ultrasound: Physics and Equipment (Cambridge University Press) pp. 1-3

    Google Scholar Pub Med

    Wiskin JW, Borup D T, Iuanow E, Klock J and Lenox M W 2017 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 64 1161

    Google Scholar Pub Med

    Duric N, Littrup P, Poulo L, Babkin A, Pevzner R, Holsapple E, Rama O and Glide C 2007 Med. Phys. 34 773

    Google Scholar Pub Med

    Qu X, Azuma T, Yogi T, Azuma S, Takeuchi H, Tamano S and Takagi S 2016 J. Med. Ultrason. 43 461

    Google Scholar Pub Med

    Perrot V, Polichetti M, Varray F and Garcia D 2021 Ultrasonics 111 106309

    Google Scholar Pub Med

    Bao Y and Jia J 2020 IEEE Trans. Instrum. Meas. 69 974

    Google Scholar Pub Med

    Devaney A 1982 Ultrason. Imag. 4 336

    Google Scholar Pub Med

    Simonetti F, Huang L, Duric N and Littrup P 2009 Med. Phys. 36 2955

    Google Scholar Pub Med

    Schuster G T 1996 Geophys. J. Int. 127 427

    Google Scholar Pub Med

    Wu X, Li Y, Su C, Li P, Wang X and Lin W 2023 Ultrasonics 132 107004

    Google Scholar Pub Med

    Virieux J and Operto S 2009 Geophysics 64 74

    Google Scholar Pub Med

    Pratt R, Huang L, Duric N and Littrup P 2007 Proceedings 6510 65104

    Google Scholar Pub Med

    Ali R, et al. 2024 IEEE Trans. Med. Imaging. 43 2988

    Google Scholar Pub Med

    Wu X, Li Y, Su C, Li P and Lin W 2025 Ultrasonics 147 107505

    Google Scholar Pub Med

    Li Y, Shi Q, Li Y, Song X, Liu C, Ta D and Wang W 2021 Chin. Phys. B 30 014302

    Google Scholar Pub Med

    Régo R C L, et al. 2019 Proceedings of the 16th International Congress of the Brazilian Geophysical Society & Expogef August 19-22, 2019, Rio de Janeiro, Brazil

    Google Scholar Pub Med

    Bunks C, Saleck F M, Zaleski S and Chavent G 1995 Geophysics. 60 1457

    Google Scholar Pub Med

    Pratt R G 1999 Geophysics 64 888

    Google Scholar Pub Med

    Pratt R and Shipp R 1999 Geophysics 64 902

    Google Scholar Pub Med

    Sirgue L and Pratt R G 2004 Geophysics 69 231

    Google Scholar Pub Med

    Kazei V V, Kalita M and Alkhalifah T 2017 Proceedings of the 79th EAGE Conference and Exhibition 2017, June 12-15, 2017 Paris, France, pp. 1-5

    Google Scholar Pub Med

    Tikhonov A N and Arsenin V Y 1977 Solutions of ill-posed problems (New York: John Wiley & Sons)

    Google Scholar Pub Med

    Bertete-Aguirre H, Cherkaev E and Oristaglio M 2002 Geophysical Journal International 149 499

    Google Scholar Pub Med

    Aghamiry H, Gholami A and Operto S 2020 Geophysics 85 116

    Google Scholar Pub Med

    Aghamiry H S, Gholami A and Operto S 2021 SIAM Journal on Imaging Sciences 14 58

    Google Scholar Pub Med

    Aghamiry H S, Gholami A and Operto S 2018 Proceedings of the SEG meeting, October 18, 2018, Anaheim, California, USA pp. 1253-1257

    Google Scholar Pub Med

    Agazade K, Gholami A and Aghamiry H S 2023 84th EAGE Annual Conference & Exhibition, June 2023, Vienna, Autria pp. 1-5

    Google Scholar Pub Med

    Tarantola A 2005 Inverse Problem Theory and Methods for Model Parameter Estimation (Philadelphia: Society for Industrial and Applied Mathematics) pp. 81-96

    Google Scholar Pub Med

    Wang Y 2017 Seismic Inversion: Theory and Applications (JohnWiley & Sons, Ltd)

    Google Scholar Pub Med

    Nocedal J and Wright S J 2006 Numerical optimization (New York: Springer) pp. 30-191

    Google Scholar Pub Med

    Byrd R H, Lu P, Nocedal J and Zhu C 1995 SIAM J. Sci. Comput. 16 1190

    Google Scholar Pub Med

    Plessix R E 2006 Geophys. J. Int. 167 495

    Google Scholar Pub Med

    Osnabrugge G, Leedumrongwatthanakun S and Vellekoop I M 2016 J. Comput. Phys. 322 113

    Google Scholar Pub Med

    Wang Z, Bovik A C, Sheikh H R and Simoncelli E P 2004 IEEE Trans. Image Process 13 600

    Google Scholar Pub Med

    Lou Y, et al. 2017 J. Biomed. Opt. 22 041015

    Google Scholar Pub Med

    Treeby B E and Cox B T 2010 J. Biomed. Opt. 15 021314

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(109) PDF downloads(0) Cited by(0)

Access History

Sobolev space norm regularized full waveform inversion for ultrasound computed tomography

Fund Project: 

Abstract: Full waveform inversion (FWI) is a complex data fitting process based on full wavefield modeling, aiming to quantitatively reconstruct unknown model parameters from partial waveform data with high-resolution. However, this process is highly nonlinear and ill-posed, therefore achieving high-resolution imaging of complex biological tissues within a limited number of iterations remains challenging. We propose a multiscale frequency-domain full waveform inversion (FDFWI) framework for ultrasound computed tomography (USCT) imaging of biological tissues, which innovatively incorporates Sobolev space norm regularization for enhancement of prior information. Specifically, we investigate the effect of different types of hyperparameter on the imaging quality, during which the regularization weight is dynamically adapted based on the ratio of the regularization term to the data fidelity term. This strategy reduces reliance on predefined hyperparameters, ensuring robust inversion performance. The inversion results from both numerical and experimental tests (i.e., numerical breast, thigh, and ex vivo pork-belly tissue) demonstrate the effectiveness of our regularized FWI strategy. These findings will contribute to the application of the FWI technique in quantitative imaging based on USCT and make USCT possible to be another high-resolution imaging method after x-ray computed tomography and magnetic resonance imaging.

Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return