2025 Volume 34 Issue 5
Article Contents

Wenlai Mu(母文来), Nisar Muhammad(穆罕默德·尼萨), Baojuan Dong(董宝娟), Nguyen Tuan Hung(阮俊兴), Huaihong Guo(郭怀红), Riichiro Saito(斋藤理一郎), Weijiang Gong(公卫江), Teng Yang(杨腾), and Zhidong Zhang(张志东). 2025: Enhanced thermoelectric properties of the topological phase of monolayer HfC, Chinese Physics B, 34(5): 057301. doi: 10.1088/1674-1056/adbd17
Citation: Wenlai Mu(母文来), Nisar Muhammad(穆罕默德·尼萨), Baojuan Dong(董宝娟), Nguyen Tuan Hung(阮俊兴), Huaihong Guo(郭怀红), Riichiro Saito(斋藤理一郎), Weijiang Gong(公卫江), Teng Yang(杨腾), and Zhidong Zhang(张志东). 2025: Enhanced thermoelectric properties of the topological phase of monolayer HfC, Chinese Physics B, 34(5): 057301. doi: 10.1088/1674-1056/adbd17

Enhanced thermoelectric properties of the topological phase of monolayer HfC

  • Received Date: 10/01/2025
    Accepted Date: 03/03/2025
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant No. 52031014), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0460000), and the National Key Research and Development Program of China (Grant No. 2022YFA1203900). Baojuan Dong acknowledges the National Natural Science Foundation of China (Grant Nos. 12004228 and U21A6004). Riichiro Saito acknowledges a JSPS KAKENHI (Grant No. JP22H00283), Nguyen Tuan Hung acknowledges financial support from the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University. Weijiang Gong acknowledges financial support from the National Natural Science Foundation of China (Grant No. 51702146).

  • PACS: 73.50.Lw; 31.15.A-

  • Thermoelectric properties of a topological insulator, monolayer HfC, are calculated using first-principles calculation, which accounts for the two contributions from edge and bulk states. By applying strain up to 8% along the $a$ axis, the monolayer HfC shows the topological phase while it is in a non-topological state without strain. The figure of merit, $ZT$, for the topological phase becomes two-ordered magnitude larger ($ZT$ $\sim$ 2) because of larger electric conductivity than that of the non-topological phase due to edge current. The total Seebeck coefficient $S$, and $ZT$ have maximum values when the chemical potential is located at the highest energy of the edge state. The peak of $ZT$ comes from the fact that the product of divergent $S$ and quickly-decreasing electric conductivity above the highest energy of the edge state. We further optimize $S$ and $ZT$ by changing the sample size and temperature.
  • 加载中
  • Goldsmid H J et al. 2010 Introduction of Thermoelectricity (Heidelberg, Germany: CRC press)

    Google Scholar Pub Med

    Rowe D M E 1995 CRC Handbook of Termoelectrics (Springer)

    Google Scholar Pub Med

    Pei Y, Shi X, LaLonde A,Wang H, Chen L and Snyder G J 2011 Nature 473 66

    Google Scholar Pub Med

    Zhu H, Zhang B, Wang G, Peng K, Yan Y, Zhang Q, Han X, Wang G, Lu X and Zhou X 2019 J. Mater. Chem. A 7 11690

    Google Scholar Pub Med

    Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602

    Google Scholar Pub Med

    Hung N T, Nugraha A R T, Hasdeo E H, Dresselhaus M S and Saito R 2015 Phys. Rev. B 92 165426

    Google Scholar Pub Med

    Gong Y, Zhang S, Hou Y, Li S, Wang C, Xiong W, Zhang Q, Miao X, Liu J, Cao Y, Li D, Chen G and Tang G 2023 ACS Nano 17 801

    Google Scholar Pub Med

    Tao P, Guo H H, Yang T and Zhang Z D 2014 Chin. Phys. B 23 106801

    Google Scholar Pub Med

    Guo H H, Yang T, Tao T and Zhang Z D 2014 Chin. Phys. B 23 017201

    Google Scholar Pub Med

    Song H D, Sheng D, Wang A Q, Li J G, Yu D P and Liao Z M 2017 Chin. Phys. B 26 037301

    Google Scholar Pub Med

    Qi X L and Zhang S C 2010 Phys. Today 63 33

    Google Scholar Pub Med

    Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045

    Google Scholar Pub Med

    Sun Y, Chen X Q, Yunoki S, Li D and Li Y 2010 Phys. Rev. Lett. 105 216406

    Google Scholar Pub Med

    Dong Q X, Ruan B B, Huang Y F, Wang Y Y, Zhang L B, Bai J L, Liu Q Y, Cheng JW, Ren Z A and Chen G F 2023 Chin. Phys. B 32 066501

    Google Scholar Pub Med

    Xu Y, Gan Z and Zhang S C 2014 Phys. Rev. Lett. 112 226801

    Google Scholar Pub Med

    Hasdeo E H, Krisna L, Hanna M Y, Gunara B E, Hung N T and Nugraha A R T 2019 J. Appl. Phys. 126 036602

    Google Scholar Pub Med

    Gaffar M, Wella S A and Hasdeo E H 2021 Phys. Rev. B 104 205105

    Google Scholar Pub Med

    Takahashi R and Murakami S 2010 Phys. Rev. B 81 161302(R)

    Google Scholar Pub Med

    Zhang R W, Ji W X, Zhang C W, Li S S, Li P and Wang P J 2016 J. Mater. Chem. C 4 2088

    Google Scholar Pub Med

    Zhou L J, Shao B, Shi W J, Sun Y, Felser C, Yan B H and Frauenheim T 2016 2D Mater. 3 035022

    Google Scholar Pub Med

    Bardeen J and Shockley W 1950 Phys. Rev. 80 72

    Google Scholar Pub Med

    Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169

    Google Scholar Pub Med

    Kresse G and Joubert D 1999 Phys. Rev. B 59 1758

    Google Scholar Pub Med

    Blöchl P 1994 Phys. Rev. B 50 17953

    Google Scholar Pub Med

    Wang S K, Pratama F R, Ukhtary M S and Saito R 2020 Phys. Rev. B 101 081414(R)

    Google Scholar Pub Med

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685

    Google Scholar Pub Med

    Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67

    Google Scholar Pub Med

    Gooth J, Gluschke J G, Zierold R, Leijnse M, Linke H and Nielsch K 2015 Semicond. Sci. Technol. 30 015015

    Google Scholar Pub Med

    Beleznay F, Bogár F and Ladik J 2003 J. Chem. Phys. 119 5690

    Google Scholar Pub Med

    Hung N T, Nugraha A R T and Saito R 2018 Phys. Rev. Appl. 9 024019

    Google Scholar Pub Med

    Hung N T, Adhidewata J M, Nugraha A R T and Saito R 2022 Phys. Rev. B 105 115142

    Google Scholar Pub Med

    Muller G, Weiss D, Khaetskii A, Vonklitzing K, Koch S, Nickel H, Schlapp W and Losch R 1992 Phys. Rev. B 45 3932

    Google Scholar Pub Med

    Daumer V, Golombek I, Gbordzoe M, Novik E, Hock V, Becker C, Buhmann H and Molenkamp L 2003 Appl. Phys. Lett. 83 1376

    Google Scholar Pub Med

    Wang T H and Jeng H T 2018 ACS Appl. Energy Mater. 1 5646

    Google Scholar Pub Med

    Ahmad M, Agarwal K and Mehta B 2020 J. Appl. Phys. 128 035108

    Google Scholar Pub Med

    Matsushita S Y, Huynh K K, Yoshino H, Tu N H, Tanabe Y and Tanigaki K 2017 Phys. Rev. Mater. 1 054202

    Google Scholar Pub Med

    Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106

    Google Scholar Pub Med

    Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747

    Google Scholar Pub Med

    Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(91) PDF downloads(0) Cited by(0)

Access History

Enhanced thermoelectric properties of the topological phase of monolayer HfC

Fund Project: 

Abstract: Thermoelectric properties of a topological insulator, monolayer HfC, are calculated using first-principles calculation, which accounts for the two contributions from edge and bulk states. By applying strain up to 8% along the $a$ axis, the monolayer HfC shows the topological phase while it is in a non-topological state without strain. The figure of merit, $ZT$, for the topological phase becomes two-ordered magnitude larger ($ZT$ $\sim$ 2) because of larger electric conductivity than that of the non-topological phase due to edge current. The total Seebeck coefficient $S$, and $ZT$ have maximum values when the chemical potential is located at the highest energy of the edge state. The peak of $ZT$ comes from the fact that the product of divergent $S$ and quickly-decreasing electric conductivity above the highest energy of the edge state. We further optimize $S$ and $ZT$ by changing the sample size and temperature.

Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return