2025 Volume 34 Issue 5
Article Contents

Guo-Qing Peng(彭国庆), Kai Wang(王凯), Jun Yan(颜君), and Wei Kang(康炜). 2025: Detailed discussion of discrepancy between theoretical and observed spectral lines in Kr-like W38+ based on advanced consideration of core electron correlations, Chinese Physics B, 34(5): 053101. doi: 10.1088/1674-1056/adbdbe
Citation: Guo-Qing Peng(彭国庆), Kai Wang(王凯), Jun Yan(颜君), and Wei Kang(康炜). 2025: Detailed discussion of discrepancy between theoretical and observed spectral lines in Kr-like W38+ based on advanced consideration of core electron correlations, Chinese Physics B, 34(5): 053101. doi: 10.1088/1674-1056/adbdbe

Detailed discussion of discrepancy between theoretical and observed spectral lines in Kr-like W38+ based on advanced consideration of core electron correlations

  • Received Date: 02/01/2025
    Accepted Date: 21/02/2025
  • Fund Project:

    Project supported by the Science Challenge Project of China Academy of Engineering Physics (CAEP) (Grant No. TZ2018005) and the National Natural Science Foundation of China (Grant Nos. 12474277, 12374259, 12104095, 12074081, and 12074082).

  • PACS: 31.15.vj; 31.15.am; 31.15.xp; 32.70.Cs

  • For the observed line at 799.23 Å in tungsten EBIT experiment, which was assigned to be $^{3}{\rm F}_{4}^{\rm o}-^{3}{\rm F}_{3}^{\rm o}$ ${\rm ([{\rm Ar}]4s^24{\rm p}^{5}{\rm 4d})}$ of W$^{38+}$ ion, there were noticeable deviations for most calculated wavelengths from the measured value. To clarify this issue, we carry out an extensive calculation for energy levels and transition properties of W$^{38+}$ ion using the multi-configuration Dirac-Hartree-Fock and relativistic configuration interaction method, in which more deeper inner core electron correlations are included, and different forms of Breit interaction as well as quantum electrodynamics corrections are investigated. It is found that the inner core electron correlations can affect the total energy of levels, while only slightly modify the excited energy of levels in 4s$^2$4p$^{5}$4d complex. The present calculated wavelengths agree with the corresponding measured values excellently except the line at 799.23 Å. Thus we are strongly suspicious this line should be misidentified, and suggest that new experiment with higher resolution and spectra analysis based on more accurate atomic data should be performed for W$^{38+}$ ion.
  • 加载中
  • Neu R, Dux R, Kallenbach A, Pütterich T, Balden M, Fuchs J, Herrmann A, Maggi C, O’Mullane M, Pugno R, Radivojevic I, Rohde V, Sips A, Suttrop W, Whiteford A and the ASDEX Upgrade Team 2005 Nuclear Fusion 45 209

    Google Scholar Pub Med

    Wurmshuber M, Doppermann S, Wurster S and Kiener D 2019 IOP Conference Series: Materials Science and Engineering 580 012051

    Google Scholar Pub Med

    Sizyuk V and Hassanein A 2022 Sci. Rep. 12 4698

    Google Scholar Pub Med

    Zhu X L, Ke Z H, Cheng L, Zhang P, Yuan Y, Cao X Z and Lu G H 2024 Nuclear Materials and Energy 38 101620

    Google Scholar Pub Med

    Schmuck K, Burtscher M, Alfreider M and Kiener D 2024 Materials Design 247 113433

    Google Scholar Pub Med

    Radtke R, Biedermann C, Schwob J L, Mandelbaum P and Doron R 2001 Phys. Rev. A 64 012720

    Google Scholar Pub Med

    Utter S B, Beiersdorfer P and Trabert E 2002 Canadian Journal of Physics 80 1503

    Google Scholar Pub Med

    Nakano T, Asakura N, Kubo H, Yanagibayashi J and Ueda Y 2009 Nuclear Fusion 49 115024

    Google Scholar Pub Med

    Neu R L, Brezinsek S, Beurskens M, Bobkov V, Vries P, Giroud C, Joffrin E, Kallenbach A, Matthews G F, Mayoral M L, Pautasso G, Pütterich T, Ryter F, Schweinzer J, Team A U and Contributors J E 2014 IEEE Trans. Plasma Sci. 42 552

    Google Scholar Pub Med

    Herrmann A, Zammuto I, Balden M, Greuner H, Jaksic N, Kallenbach A, Li M, Neu R and Rohde V 2017 Nuclear Materials and Energy 12 205

    Google Scholar Pub Med

    Unterberg E A, Abrams T, Bykov I, Donovan D C, Duran J D, Elder J D, Guo H Y, Hollmann E M, Lasnier C J, Leonard A W, Moser A L, Nichols J H, Nygren R E, Rudakov D L, Stangeby P C, Thomas D M, Victor B S, Watkins J G, Wampler W R, Zach M P, Allen S L, Barton J L, Baylor L R, Boedo J A, Briesemeister A R, Buchenauer D A, Coburn J D, Chrobak C P, Ding R, Ennis D A, Grierson B A, Hinson E T, Johnson C A, McLean A G, Petrie TW, Schmitz O, Shiraki D,Wang H Q, Wilcox R S and Zamperini S 2019 Nuclear Fusion 60 016028

    Google Scholar Pub Med

    Zito A,Wischmeier M, Kappatou A, Kallenbach A, Sciortino F, Rohde V, Schmid K, Hinson E T, Schmitz O, Cavedon M, McDermott R M, Dux R, Griener M and Stroth U 2023 Nuclear Fusion 63 096027

    Google Scholar Pub Med

    Jin Y Z, Wang H, Liu X, Lian Y Y, Feng F, Wang J B, Chai Z J, Song J P and Duan X R 2023 Nuclear Materials and Energy 36 101502

    Google Scholar Pub Med

    Neu R, Fournier K B, Schlogl D and Rice J 1997 J. Phys. B: At., Mol. Opt. Phys. 30 5057

    Google Scholar Pub Med

    Pütterich T, Neu R, Biedermann C, Radtke R and Upgrade T A 2005 J. Phys. B: At., Mol. Opt. Phys. 38 3071

    Google Scholar Pub Med

    Morita S, Dong C F, Kato D, Liu Y, Zhang L, Cui Z Y, Goto M, Kawamoto Y, Murakami I and Oishi T 2019 J. Phys.: Conf. Ser. 1289 012005

    Google Scholar Pub Med

    Xu Z, Zhang L, Cheng Y X, Morita S, Li L, Zhang W M, Zhang F L, Zhao Z H, Zhou T F,Wu ZW, Lin X D, Gao X, Ding X B, Yang Y and Liu H Q 2021 Nucl. Instrum. Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detectors and Associated Equipment 1010 165545

    Google Scholar Pub Med

    Boumendjel M Y, Desgranges C, Guirlet R and Peyrusse O 2023 Phys. Plasmas 30 093302

    Google Scholar Pub Med

    Lei L R, Ding X B, Wu C Q, Zhang D H, Zhang L, Zhang F L, Yao K, Yang Y, Fu Y Q and Dong C Z 2024 New J. Phys. 26 053001

    Google Scholar Pub Med

    Kallenbach A, Neu R, Dux R, Fahrbach H U, Fuchs J C, Giannone L, Gruber O, Herrmann A, Lang P T, Lipschultz B, Maggi C F, Neuhauser J, Philipps V, Pütterich T, Rohde V, Roth J, Sergienko G, Sips A and Upgrade T A 2005 Plasma Physics and Controlled Fusion 47 B207

    Google Scholar Pub Med

    Pütterich T, Neu R, Dux R, Whiteford A D, O’Mullane M G and the ASDEX Upgrade Team 2008 Plasma Physics and Controlled Fusion 50 085016

    Google Scholar Pub Med

    Hollmann E M, Commaux N, Shiraki D, Alexander N, Bykov I, Moser A L, Thomas D and Victor B S 2017 Rev. Sci. Instrum. 88 103501

    Google Scholar Pub Med

    Rzadkiewicz J, Yang Y, Koziol K, O’Mullane M G, Patel A, Xiao J, Yao K, Shen Y, Lu D, Hutton R, Zou Y and Contributors J 2018 Phys. Rev. A 97 052501

    Google Scholar Pub Med

    Murakami I, Kato D, Oishi T, Goto M, Kawamoto Y, Suzuki C, Sakaue H A and Morita S 2021 Nuclear Materials and Energy 26 100923

    Google Scholar Pub Med

    Zhang C Y, Wang K, Si R, Li J Q, Song C X, Wu S J, Yan B and Chen C 2023 Chin. Phys. B 32 113102

    Google Scholar Pub Med

    Ralchenko Y, Draganić I N, Osin D, Gillaspy J D and Reader J 2011 Phys. Rev. A 83 032517

    Google Scholar Pub Med

    Li J G, Jönsson P, Godefroid M, Dong C Z and Gaigalas G 2012 Phys. Rev. A 86 052523

    Google Scholar Pub Med

    Tremblay P E, Fontaine G, Fusillo N P G, Dunlap B H, Gänicke B T, Hollands M A, Hermes J J, Marsh T R, Cukanovaite E and Cunningham T 2019 Nature 565 202

    Google Scholar Pub Med

    Hu S X, Karasiev V V, Recoules V, Nilson P M, Brouwer N and Torrent M 2020 Nat. Commun. 11 1989

    Google Scholar Pub Med

    Blundell S A, Johnson W R and Sapirstein J 1990 Phys. Rev. Lett. 65 1411

    Google Scholar Pub Med

    Schiller S 2007 Phys. Rev. Lett. 98 180801

    Google Scholar Pub Med

    Bieroń J, Gaigalas G, Gaidamauskas E, Fritzsche S, Indelicato P and Jönsson P 2009 Phys. Rev. A 80 012513

    Google Scholar Pub Med

    Berengut J C, Dzuba V A and Flambaum V V 2010 Phys. Rev. Lett. 105 120801

    Google Scholar Pub Med

    Tsai Y D, Eby J and Safronova M S 2022 Nature Astronomy 7 113

    Google Scholar Pub Med

    Zhang X, Banerjee A, Leyser M, Perez G, Schiller S, Budker D and Antypas D 2023 Phys. Rev. Lett. 130 251002

    Google Scholar Pub Med

    Göttel A S, Ejlli A, Karan K, Vermeulen S M, Aiello L, Raymond V and Grote H 2024 Phys. Rev. Lett. 133 101001

    Google Scholar Pub Med

    Radtke R, Biedermann C, Fumann G, Schwob J L, Mandelbaum P and Doron R 2007 Atomic and Plasma-Material Interaction Data for Fusion 13 45

    Google Scholar Pub Med

    Gaigalas G, Rynkun P and Froese Fischer C 2015 Phys. Rev. A 91 022509

    Google Scholar Pub Med

    Guo X L, Grumer J, Brage T, Si R, Chen C Y, Jönsson P, Wang K, Yan J, Hutton R and Zou Y M 2016 J. Phys. B: Atom., Mol. Opt. Phys. 49 135003

    Google Scholar Pub Med

    Lindgren I 1974 J. Phys. B: Atom. Mol. Phys. 7 2441

    Google Scholar Pub Med

    Sharma R, Goyal A and Mohan M 2019 Journal of Electron Spectroscopy and Related Phenomena 234 47

    Google Scholar Pub Med

    Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun. 55 425

    Google Scholar Pub Med

    Gu M F 2008 Canadian Journal of Physics 86 675

    Google Scholar Pub Med

    Beier T, Mohr P J, Persson H and Soff G 1998 Phys. Rev. A 58 954

    Google Scholar Pub Med

    Le Bigot E O, Indelicato P and Mohr P J 2001 Phys. Rev. A 64 052508

    Google Scholar Pub Med

    Welton T A 1948 Phys. Rev. 74 1157

    Google Scholar Pub Med

    Shabaev V M, Tupitsyn I I and Yerokhin V A 2013 Phys. Rev. A 88 012513

    Google Scholar Pub Med

    Malyshev A V, Glazov D A, Shabaev V M, Tupitsyn I I, Yerokhin V A and Zaytsev V A 2022 Phys. Rev. A 106 012806

    Google Scholar Pub Med

    Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207

    Google Scholar Pub Med

    Jönsson P, Gaigalas G, Froese Fischer C, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J G and Li W X 2023 Atoms 11 68

    Google Scholar Pub Med

    Zhang C Y,Wang K, Godefroid M, Jönsson P, Si R and Chen C Y 2020 Phys. Rev. A 101 032509

    Google Scholar Pub Med

    Zhang C Y, Wang K, Godefroid M, Jönsson P, Si R and Chen C Y 2021 Journal of Quantitative Spectroscopy and Radiative Transfer 269 107650

    Google Scholar Pub Med

    Guo X L, Huang M, Yan J, Li S, Wang K, Si R and Chen C Y 2015 Chin. Phys. B 25 013101

    Google Scholar Pub Med

    Froese Fischer C 2014 Atoms 2 1

    Google Scholar Pub Med

    Froese Fischer C, Brage T and Jönsson P 2022 Computational Atomic Structure: An MCHF Approach (New York: Routledge) pp. 171-177

    Google Scholar Pub Med

    Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W X, Li J G, Brage T, Grant I P, Bieroń J and Froese Fischer C 2022 Atoms 11 7

    Google Scholar Pub Med

    Mittleman Marvin H 1972 Phys. Rev. A 5 2395

    Google Scholar Pub Med

    Indelicato P 2019 J. Phys. B: Atom., Mol. Opt. Phys. 52 232001

    Google Scholar Pub Med

    Grant I P and Pyper N C 1976 J. Phys. B: Atom. Mol. Phys. 9 761

    Google Scholar Pub Med

    Uehling E A 1935 Phys. Rev. 48 55

    Google Scholar Pub Med

    Wichmann E H and Kroll N M 1956 Phys. Rev. 101 843

    Google Scholar Pub Med

    Fullerton L W and Rinker G A 1976 Phys. Rev. A 13 1283

    Google Scholar Pub Med

    Beier T, Plunien G, Greiner M and Soff G 1997 J. Phys. B: Atom., Mol. Opt. Phys. 30 2761

    Google Scholar Pub Med

    Mohr P J 1983 Atomic Data and Nuclear Data Tables 29 453

    Google Scholar Pub Med

    Klarsfeld S and Maquet A 1973 Phys. Lett. B 43 201

    Google Scholar Pub Med

    Schiffmann S, Li J G, Ekman J, Gaigalas G, Godefroid M, Jönsson P and Bieroń J 2022 Comput. Phys. Commun. 278 108403

    Google Scholar Pub Med

    Gaigalas G, Froese Fischer C, Rynkun P and Jönsson P 2017 Atoms 5 5

    Google Scholar Pub Med

    Guo X L, Li M C, Si R, He X D, Wang K, Dai Z T, Liu Y M, Zhang H J and Chen C Y 2017 J. Phys. B: Atom., Mol. Opt. Phys. 51 015002

    Google Scholar Pub Med

    Wang K, Zhang C Y, Si R, Li S, Chen Z B, Zhao X H, Chen C Y and Yan J 2018 Atomic Data and Nuclear Data Tables 123-124 114

    Google Scholar Pub Med

    Kramida A, Yu Ralchenko, Reader J and and NIST ASD Team 2022 NIST Atomic Spectra Database (Ver. 5.10),

    Google Scholar Pub Med

    [Online]. Available: https://physics.nist.gov/asd

    Google Scholar Pub Med

    , December 4]. National Institute of Standards and Technology, Gaithersburg, MD

    Google Scholar Pub Med

    Fournier K B 1998 Atomic Data and Nuclear Data Tables 68 1

    Google Scholar Pub Med

    Shi B L, Q Y, Li X F, Deng B L, Jiang G and Dou X L 2022 Chin. Phys. B 31 053102

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(49) PDF downloads(0) Cited by(0)

Access History

Detailed discussion of discrepancy between theoretical and observed spectral lines in Kr-like W38+ based on advanced consideration of core electron correlations

Fund Project: 

Abstract: For the observed line at 799.23 Å in tungsten EBIT experiment, which was assigned to be $^{3}{\rm F}_{4}^{\rm o}-^{3}{\rm F}_{3}^{\rm o}$ ${\rm ([{\rm Ar}]4s^24{\rm p}^{5}{\rm 4d})}$ of W$^{38+}$ ion, there were noticeable deviations for most calculated wavelengths from the measured value. To clarify this issue, we carry out an extensive calculation for energy levels and transition properties of W$^{38+}$ ion using the multi-configuration Dirac-Hartree-Fock and relativistic configuration interaction method, in which more deeper inner core electron correlations are included, and different forms of Breit interaction as well as quantum electrodynamics corrections are investigated. It is found that the inner core electron correlations can affect the total energy of levels, while only slightly modify the excited energy of levels in 4s$^2$4p$^{5}$4d complex. The present calculated wavelengths agree with the corresponding measured values excellently except the line at 799.23 Å. Thus we are strongly suspicious this line should be misidentified, and suggest that new experiment with higher resolution and spectra analysis based on more accurate atomic data should be performed for W$^{38+}$ ion.

Reference (74)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return