2025 Volume 34 Issue 5
Article Contents

Jie Liu(刘洁), Yong-Kang Zhang(张永康), and Xiao-Lei Hao(郝小雷)†. 2025: Alignment-dependent ionization of molecules in near-circularly polarized intense laser fields, Chinese Physics B, 34(5): 053201. doi: 10.1088/1674-1056/adbdc2
Citation: Jie Liu(刘洁), Yong-Kang Zhang(张永康), and Xiao-Lei Hao(郝小雷)†. 2025: Alignment-dependent ionization of molecules in near-circularly polarized intense laser fields, Chinese Physics B, 34(5): 053201. doi: 10.1088/1674-1056/adbdc2

Alignment-dependent ionization of molecules in near-circularly polarized intense laser fields

  • Received Date: 23/01/2025
    Accepted Date: 27/02/2025
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant No. 12274273).

  • PACS: 32.80.Rm; 33.20.Xx; 33.80.Rv; 33.80.-b

  • The alignment-dependent photoelectron spectrum is a valuable tool for mapping out the electronic structure of molecular orbitals. However, this approach may not be applicable to all molecules, such as CO$_{2}$, as the ionization process in a linearly polarized laser field involves contributions from orbitals other than the highest occupied molecular orbital (HOMO). Here, we conducted a theoretical investigation into the ionization process of N$_{2}$ and CO$_{2}$ in near-circularly polarized laser field using the Coulomb-corrected strong-field approximation (CCSFA) method for molecules. In particular, we introduced a generalized dressed state into the CCSFA method in order to account for the impact of the laser field on the molecular initial state. The simulated alignment-dependent photoelectron momentum distribution (PMD) of the two molecules exhibited markedly disparate behaviors, which were in excellent agreement with the previous experimental observations reported in [Phys. Rev. A 102, 013117 (2020)]. Our findings indicate that under a near-circularly polarized laser field, the alignment-dependent PMD of molecules is primarily sourced from the HOMO, in contrast to the situation under a linearly polarized laser field. Moreover, a satisfactory correlation between the alignment-dependent angular distribution and the orbital symmetry was observed, which suggests an effective approach for molecular orbital imaging.
  • 加载中
  • Rost J M and Saalmann U 2019 Nat. Photon. 13 439

    Google Scholar Pub Med

    Blaga C I, Xu Junliang, DiChiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F and Lin C D 2012 Nature 483 194

    Google Scholar Pub Med

    Niikura H, Légaré F, Hasbani R, Bandrauk A D, Ivanov M Y, Villeneuve D M and Corkum P B 2002 Nature 417 917

    Google Scholar Pub Med

    Niikura H, Légaré F, Hasbani R, Ivanov M Y, Villeneuve D M and Corkum P B 2003 Nature 421 826

    Google Scholar Pub Med

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R and Keller U 2008 Nat. Phys. 4 565

    Google Scholar Pub Med

    Zhou S S, Lan W D, Chen J G, Wang J, Guo F M and Yang Y J 2022 Phys. Rev. A 106 023510

    Google Scholar Pub Med

    Uiberacker M, Uphues Th, Schultze M Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2007 Nature 446 627

    Google Scholar Pub Med

    Pruna F R and Vrakking M J J 2001 Phys. Rev. Lett. 87 153902

    Google Scholar Pub Med

    Pavičić D, Lee K F, Rayner D M, Corkum P B and Villeneuve D M 2007 Phys. Rev. Lett. 98 243001

    Google Scholar Pub Med

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavičić D, Bandulet H C, Pépin H, Kieffer J C, Dörner R, Villeneuve D M and Corkum P B 2008 Science 320 1478

    Google Scholar Pub Med

    Akagi H, Otobe T, Staudte A, Shiner A, Turner F, Dörner R, Villeneuve D M and Corkum P B 2009 Science 325 1364

    Google Scholar Pub Med

    Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867

    Google Scholar Pub Med

    Thomann I, Lock R, Sharma V, Gagnon E, Pratt S T, Kapteyn H C, Murnane M M and Li Wen 2008 J. Phys. Chem. A 112 9382

    Google Scholar Pub Med

    Son S K and Chu S I 2009 Phys. Rev. A 80 011403

    Google Scholar Pub Med

    Petretti S, Vanne Y V, Saenz A, Castro A and Decleva P 2010 Phys. Rev. Lett. 104 223001

    Google Scholar Pub Med

    Majety V P and Scrinzi A 2015 Phys. Rev. Lett. 115 103002

    Google Scholar Pub Med

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-samha M, Madsen L B and Keller U 2012 Nat. Phys. 8 76

    Google Scholar Pub Med

    Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Yu, Smirnova O and Dudovich N 2012 Nature 485 343

    Google Scholar Pub Med

    Yu M, Liu K, Li M, Yan J Q, Cao C P, Tan J, Liang J T, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M and Lu P X 2022 Light Sci. Appl. 11 215

    Google Scholar Pub Med

    Zhou H S, Li Q Y, Guo F, Wang J, Chen J G and Yang Y J 2021 Chem. Phys. 545 111147

    Google Scholar Pub Med

    Fu T T, Zhou S S, Chen J G,Wang J, Guo F M and Yang Y J 2023 Opt. Express 31 30171

    Google Scholar Pub Med

    Chen J Q, JiangWL, Qiao Y, Yang Y J and Chen J G 2025 Chin. Phys. Lett. 42 013201

    Google Scholar Pub Med

    Wu J, Magrakvelidze M, Schmidt L P H, Kunitski M, Pfeifer T, Schöffler M, Pitzer M, Richter M, Voss S, Sann H, Kim H, Lower J, Jahnke T, Czasch A, Thumm U and Dörner R 2013 Nat. Commun. 4 2177

    Google Scholar Pub Med

    Serov V V, Bray A W and Kheifets A S 2019 Phys. Rev. A 99 063428

    Google Scholar Pub Med

    Quan W, Serov V V, Wei M Z, Zhao M, Zhou Y, Wang Y L, Lai X Y, Kheifets A S and Liu X J 2019 Phys. Rev. Lett. 123 223204

    Google Scholar Pub Med

    Khan A, Trabert D, Eckart S, Kunitski M, Jahnke T and Dörner R 2020 Phys. Rev. A 101 023409

    Google Scholar Pub Med

    Yan J Q, Xie W H, Li M, Liu K, Luo S Q, Cao C P, Guo K Y, Cao W, Lan P F, Zhang Q B, Zhou Y M and Lu P X 2020 Phys. Rev. A 102 013117

    Google Scholar Pub Med

    Tong X M, Zhao Z X and Lin C D 2002 Phys. Rev. A 66 033402

    Google Scholar Pub Med

    Muth-Böhm J, Becker A and Faisal F H M 2000 Phys. Rev. Lett. 85 2280

    Google Scholar Pub Med

    Kjeldsen T K and Madsen L B 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2033

    Google Scholar Pub Med

    Yan T M, Popruzhenko S V, Vrakking M J J and Bauer D 2010 Phys. Rev. Lett. 105 253002

    Google Scholar Pub Med

    Wang C, Okunishi M, Hao X, Ito Y, Chen J, Yang Y, Lucchese R R, Zhang M, Yan B, Li W D, Ding D and Ueda K 2016 Phys. Rev. A 93 043422

    Google Scholar Pub Med

    Yang Y Z, Ren H, Zhang M, Zhou S P, Mu X X, Li X K, Wang Z Z, Deng K, Li M X, Ma P, Li Z, Hao X L, LiWD, Chen J,Wang C C and Ding D J 2023 Nat. Commun. 14 4951

    Google Scholar Pub Med

    DeWitt M J, Wells E and Jones R R 2001 Phys. Rev. Lett. 87 153001

    Google Scholar Pub Med

    Lin Z Y, Jia X Y, Wang C L, Hu Z L, Kang H P, Quan W, Lai X Y, Liu X J, Chen J, Zeng B, Chu W, Yao J P, Cheng Y and Xu Z Z 2012 Phys. Rev. Lett. 108 223001

    Google Scholar Pub Med

    Wei M Z, Wei Q, Sun R P, Xu S P, Xiao Z L, Zhou Y, Zhao M, Hao X Lei, Duan C X and Liu X J 2018 Phys. Rev. A 98 063418

    Google Scholar Pub Med

    Milošević D B 2006 Phys. Rev. A 74 063404

    Google Scholar Pub Med

    Chirilǎ C C and Lein M 2006 Phys. Rev. A 73 023410

    Google Scholar Pub Med

    Becker W, Chen J, Chen S G and Milošević D B 2007 Phys. Rev. A 76 033403

    Google Scholar Pub Med

    Busuladžić M, Gazibegovic-Busuladžić A, Milošević D B and Becker W 2008 Phys. Rev. A 78 033412

    Google Scholar Pub Med

    Busuladžić M and Milošević D B 2010 Phys. Rev. A 82 015401

    Google Scholar Pub Med

    Lewenstein M, Kulander K C, Schafer K J and Bucksbaum P H 1995 Phys. Rev. A 51 1495

    Google Scholar Pub Med

    Figueira de Morisson Faria C, Schomerus H and Becker W 2002 Phys. Rev. A 66 043413

    Google Scholar Pub Med

    Usachenko V I and Chu S I 2005 Phys. Rev. A 71 063410

    Google Scholar Pub Med

    Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M and Montgomery J A 1993 J. Comput. Chem. 14 1347

    Google Scholar Pub Med

    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972

    Google Scholar Pub Med

    Jin C, Le A T and Lin C D 2011 Phys. Rev. A 83 053409

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(114) PDF downloads(0) Cited by(0)

Access History

Alignment-dependent ionization of molecules in near-circularly polarized intense laser fields

Fund Project: 

Abstract: The alignment-dependent photoelectron spectrum is a valuable tool for mapping out the electronic structure of molecular orbitals. However, this approach may not be applicable to all molecules, such as CO$_{2}$, as the ionization process in a linearly polarized laser field involves contributions from orbitals other than the highest occupied molecular orbital (HOMO). Here, we conducted a theoretical investigation into the ionization process of N$_{2}$ and CO$_{2}$ in near-circularly polarized laser field using the Coulomb-corrected strong-field approximation (CCSFA) method for molecules. In particular, we introduced a generalized dressed state into the CCSFA method in order to account for the impact of the laser field on the molecular initial state. The simulated alignment-dependent photoelectron momentum distribution (PMD) of the two molecules exhibited markedly disparate behaviors, which were in excellent agreement with the previous experimental observations reported in [Phys. Rev. A 102, 013117 (2020)]. Our findings indicate that under a near-circularly polarized laser field, the alignment-dependent PMD of molecules is primarily sourced from the HOMO, in contrast to the situation under a linearly polarized laser field. Moreover, a satisfactory correlation between the alignment-dependent angular distribution and the orbital symmetry was observed, which suggests an effective approach for molecular orbital imaging.

Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return