2025 Volume 34 Issue 6
Article Contents

Jie Cai(蔡杰), Minjian Wu(吴旻剑), Yixing Geng(耿易星), Huangang Lu(卢寰港), Han Wen(温寒), Liqi Han(韩立琦), Yanying Zhao(赵研英), Jinqing Yu(余金清), and Xueqing Yan(颜学庆). 2025: Relativistic terahertz laser pulse from photon deceleration in a plasma wakefield, Chinese Physics B, 34(6): 063201. doi: 10.1088/1674-1056/adbf82
Citation: Jie Cai(蔡杰), Minjian Wu(吴旻剑), Yixing Geng(耿易星), Huangang Lu(卢寰港), Han Wen(温寒), Liqi Han(韩立琦), Yanying Zhao(赵研英), Jinqing Yu(余金清), and Xueqing Yan(颜学庆). 2025: Relativistic terahertz laser pulse from photon deceleration in a plasma wakefield, Chinese Physics B, 34(6): 063201. doi: 10.1088/1674-1056/adbf82

Relativistic terahertz laser pulse from photon deceleration in a plasma wakefield

  • Received Date: 11/01/2025
    Accepted Date: 10/03/2025
  • Fund Project:

    Project supported by the China Postdoctoral Science Foundation (Grant No. 2024T170021), the Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant No. Z231100006023003), the National Natural Science Foundation of China (Grant Nos. 12175058, 12205007, and 11921006), and the National Science Fund of Hunan Province for Distinguished Young Scholars (Grant No. 2024JJ2009).

  • PACS: 32.30.Bv; 52.38.-r; 42.62.-b

  • Terahertz (THz) radiation, spanning the frequency range 100 GHz to 10 THz, offers diverse applications in spectroscopy, materials characterization, medical diagnostics and environmental monitoring. Despite its potential, the generation of high-intensity, tunable THz radiation remains a significant challenge. In this work, we explore a novel approach to the efficient generation of THz radiation based on laser-plasma interactions, utilizing the principles of photon deceleration. When a relativistic CO2 laser passes through a pre-ionized plasma, the laser induces a nonlinear wakefield, creating a strong refractive index gradient. This gradient, combined with the lower-density region of the wakefield, slows down the laser, facilitating the accumulation of THz radiation. The resulting THz pulse exhibits extreme collimation, high energy efficiency and tunability. Our work shows that this method can achieve up to 10% conversion efficiency with optimal plasma density near the critical density. This technique presents a promising solution for overcoming current limitations in THz source development and offers potential for diverse applications.
  • 加载中
  • Hafez H, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X and Ozaki T 2016 Journal of Optics 18 093004

    Google Scholar Pub Med

    Zhang X C, Shkurinov A and Zhang Y 2017 Nat. Photon. 11 16

    Google Scholar Pub Med

    Leitenstorfer A, Moskalenko A S, Kampfrath T, Kono J, Castro-Camus E, Peng K, Qureshi N, Turchinovich D, Tanaka K, Markelz A G, et al. 2023 J. Phys. D: Appl. Phys. 56 223001

    Google Scholar Pub Med

    Yu C, Fan S, Sun Y and Pickwell-MacPherson E 2012 Quantitative Imaging in Medicine and Surgery 2 33

    Google Scholar Pub Med

    Yu L, Hao L, Meiqiong T, Jiaoqi H, Wei L, Jinying D, Xueping C, Weiling F and Yang Z 2019 RSC Advances 9 9354

    Google Scholar Pub Med

    Chen Z, Han C, Wu Y, Li L, Huang C, Zhang Z, Wang G and Tong W 2021 IEEE Communications Magazine 59 66

    Google Scholar Pub Med

    Kulesa C 2011 IEEE Transactions on Terahertz Science and Technology 1 232

    Google Scholar Pub Med

    Lara-Avila S, Danilov A, Golubev D, He H, Kim K, Yakimova R, Lombardi F, Bauch T, Cherednichenko S and Kubatkin S 2019 Nature Astronomy 3 983

    Google Scholar Pub Med

    Nanni E A, Huang W R, Hong K H, Ravi K, Fallahi A, Moriena G, Dwayne Miller R and Kärtner F X 2015 Nat. Commun. 6 8486

    Google Scholar Pub Med

    Zhang D, Fallahi A, Hemmer M, Wu X, Fakhari M, Hua Y, Cankaya H, Calendron A L, Zapata L E, Matlis N H, et al. 2018 Nat. Photon. 12 336

    Google Scholar Pub Med

    Curry E, Fabbri S, Maxson J, Musumeci P and Gover A 2018 Phys. Rev. Lett. 120 094801

    Google Scholar Pub Med

    Zhao L, Wang Z, Lu C, Wang R, Hu C, Wang P, Qi J, Jiang T, Liu S, Ma Z, et al. 2018 Phys. Rev. X 8 021061

    Google Scholar Pub Med

    Kealhofer C, SchneiderW, Ehberger D, Ryabov A, Krausz F and Baum P 2016 Science 352 429

    Google Scholar Pub Med

    LaRue J L, Katayama T, Lindenberg A, Fisher A S, Öström H, Nilsson A and Ogasawara H 2015 Phys. Rev. Lett. 115 036103

    Google Scholar Pub Med

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A and Huber R 2011 Nat. Photon. 5 31

    Google Scholar Pub Med

    Kampfrath T, Tanaka K and Nelson K A 2013 Nat. Photon. 7 680

    Google Scholar Pub Med

    Baierl S, Hohenleutner M, Kampfrath T, Zvezdin A, Kimel A, Huber R and Mikhaylovskiy R 2016 Nat. Photon. 10 715

    Google Scholar Pub Med

    Tan Y, Zhao H, Wang W M, Zhang R, Zhao Y J, Zhang C L, Zhang X C and Zhang L L 2022 Phys. Rev. Lett. 128 093902

    Google Scholar Pub Med

    Zhang L L,WangWM,Wu T, Feng S J, Kang K, Zhang C L, Zhang Y, Li Y T, Sheng Z M and Zhang X C 2019 Phys. Rev. Applied 12 014005

    Google Scholar Pub Med

    Wang J, Zhang Z, Zhou S, Qin Z, Yu C, Cao Y, Lv Y, Chen J, Huang H, Liu W, et al. 2025 Laser & Photonics Reviews 19 2400954

    Google Scholar Pub Med

    Maestrini A,Ward J S, Javadi H, Tripon-Canseliet C, Gill J, Chattopadhyay G, Schlecht E and Mehdi I 2005 IEEE Microwave and Wireless Components Lett. 15 871

    Google Scholar Pub Med

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156

    Google Scholar Pub Med

    Wu X J, Ma J L, Zhang B L, Chai S S, Fang Z J, Xia C Y, Kong D Y, Wang J G, Liu H, Zhu C Q, et al. 2018 Opt. Express 26 7107

    Google Scholar Pub Med

    Sell A, Leitenstorfer A and Huber R 2008 Opt. Lett. 33 2767

    Google Scholar Pub Med

    Liao G Q and Li Y T 2019 IEEE Transactions on Plasma Science 47 3002

    Google Scholar Pub Med

    Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M and Zhang X C 2017 Phys. Rev. Lett. 119 235001

    Google Scholar Pub Med

    Maine P, Strickland D, Bado P, Pessot M and Mourou G 1988 IEEE Journal of Quantum Electronics 24 398

    Google Scholar Pub Med

    Sprangle P, Esarey E and Ting A 1990 Phys. Rev. Lett. 64 2011

    Google Scholar Pub Med

    Wilks S, Dawson J, Mori W, Katsouleas T and Jones M 1989 Phys. Rev. Lett. 62 2600

    Google Scholar Pub Med

    Nie Z, Pai C H, Hua J, Zhang C, Wu Y, Wan Y, Li F, Zhang J, Cheng Z, Su Q, et al. 2018 Nat. Photon. 12 489

    Google Scholar Pub Med

    Nie Z, Pai C H, Zhang J, Ning X, Hua J, He Y, Wu Y, Su Q, Liu S, Ma Y, et al. 2020 Nat. Commun. 11 2787

    Google Scholar Pub Med

    Zhu X L, Weng S M, Chen M, Sheng Z M and Zhang J 2020 Light: Science & Applications 9 46

    Google Scholar Pub Med

    Nie Z, Wu Y, Zhang C, Mori W B, Joshi C, Lu W, Pai C H, Hua J and Wang J 2021 Phys. Plasmas 28 023106

    Google Scholar Pub Med

    Zhu X L, Chen M, Weng S M, McKenna P, Sheng Z M and Zhang J 2019 Phys. Rev. Applied 12 054024

    Google Scholar Pub Med

    Li D, Zhang G, Zhao J, Hu Y, Lu Y, Zhang H, Li Q, Zhang D, Sha R, Shao F, et al. 2023 High Power Laser Science and Engineering 11 e57

    Google Scholar Pub Med

    Wang Y X, Shou Y R, Cai J, Han L Q, Geng Y X, Yu J Q and Yan X Q 2024 Phys. Plasmas 31 033111

    Google Scholar Pub Med

    Esarey E, Ting A and Sprangle P 1990 Phys. Rev. A 42 3526

    Google Scholar Pub Med

    Mironov V, Sergeev A, Vanin E and Brodin G 1990 Phys. Rev. A 42 4862

    Google Scholar Pub Med

    Lu W, Tzoufras M, Joshi C, Tsung F, Mori W, Vieira J, Fonseca R and Silva L 2007 Phys. Rev. Spec. Topi. Accel. Beams 10 061301

    Google Scholar Pub Med

    Mori W 1997 IEEE Journal of Quantum Electronics 33 1942

    Google Scholar Pub Med

    Huang S W, Granados E, Huang W R, Hong K H, Zapata L E and Kärtner F X 2013 Opt. Lett. 38 796

    Google Scholar Pub Med

    Fülöp J, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S and Hebling J 2012 Opt. Lett. 37 557

    Google Scholar Pub Med

    Stepanov A, Henin S, Petit Y, Bonacina L, Kasparian J and Wolf J P 2010 Appl. Phys. B 101 11

    Google Scholar Pub Med

    Vicario C, Ovchinnikov A, Ashitkov S, Agranat M, Fortov V and Hauri C 2014 Opt. Lett. 39 6632

    Google Scholar Pub Med

    Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, et al. 2019 Proc. Natl. Acad. Sci. USA 116 3994

    Google Scholar Pub Med

    Déchard J, Debayle A, Davoine X, Gremillet L and Bergé L 2018 Phys. Rev. Lett. 120 144801

    Google Scholar Pub Med

    Liao G, Li Y, Li C, Su L, Zheng Y, Liu M, Wang W, Hu Z, Yan W, Dunn J, et al. 2015 Phys. Rev. Lett. 114 255001

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(127) PDF downloads(1) Cited by(0)

Access History

Relativistic terahertz laser pulse from photon deceleration in a plasma wakefield

Fund Project: 

Abstract: Terahertz (THz) radiation, spanning the frequency range 100 GHz to 10 THz, offers diverse applications in spectroscopy, materials characterization, medical diagnostics and environmental monitoring. Despite its potential, the generation of high-intensity, tunable THz radiation remains a significant challenge. In this work, we explore a novel approach to the efficient generation of THz radiation based on laser-plasma interactions, utilizing the principles of photon deceleration. When a relativistic CO2 laser passes through a pre-ionized plasma, the laser induces a nonlinear wakefield, creating a strong refractive index gradient. This gradient, combined with the lower-density region of the wakefield, slows down the laser, facilitating the accumulation of THz radiation. The resulting THz pulse exhibits extreme collimation, high energy efficiency and tunability. Our work shows that this method can achieve up to 10% conversion efficiency with optimal plasma density near the critical density. This technique presents a promising solution for overcoming current limitations in THz source development and offers potential for diverse applications.

Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return