2025 Volume 34 Issue 6
Article Contents

Shiyao Shao(邵师尧), Qing Li(李庆), Lihua Zhang(张力华), Bang Liu(刘邦), Zhengyuan Zhang(张正源), Qifeng Wang(王启锋), Jun Zhang(张俊), Yu Ma(马宇), Tianyu Han(韩天宇), Hanchao Chen(陈瀚超), Jiadou Nan(南佳豆), Yiming Yin(殷一鸣), Dongyang Zhu(朱东杨), Yajun Wang(王雅君), Dongsheng Ding(丁冬生), and Baosen Shi(史保森). 2025: A Rb-Cs dual-species magneto-optical trap, Chinese Physics B, 34(6): 063702. doi: 10.1088/1674-1056/adc190
Citation: Shiyao Shao(邵师尧), Qing Li(李庆), Lihua Zhang(张力华), Bang Liu(刘邦), Zhengyuan Zhang(张正源), Qifeng Wang(王启锋), Jun Zhang(张俊), Yu Ma(马宇), Tianyu Han(韩天宇), Hanchao Chen(陈瀚超), Jiadou Nan(南佳豆), Yiming Yin(殷一鸣), Dongyang Zhu(朱东杨), Yajun Wang(王雅君), Dongsheng Ding(丁冬生), and Baosen Shi(史保森). 2025: A Rb-Cs dual-species magneto-optical trap, Chinese Physics B, 34(6): 063702. doi: 10.1088/1674-1056/adc190

A Rb-Cs dual-species magneto-optical trap

  • Received Date: 14/01/2025
    Accepted Date: 15/03/2025
  • Fund Project:

    Project supported by the National Key R&D Program of China (Grant No. 2022YFA1404002), the National Natural Science Foundation of China (Grant Nos. U20A20218, 61525504, 61435011, and T2495253), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY020200), and the Major Science and Technology Projects in Anhui Province (Grant No. 202203a13010001).

  • PACS: 37.10.-x; 37.10.De; 42.50.Ct; 42.50.-p

  • We describe a three-dimensional (3D) magneto-optical trap (MOT) capable of simultaneously capturing 85Rb and 133Cs atoms. Unlike conventional setups, our system utilizes two separate laser systems that are combined before entering the vacuum chamber, enabling the simultaneous trapping of two different atomic species. We trapped 85Rb and 133Cs atoms using relatively low total power: 8 mW cooling and 4 mW repump for 85Rb, and 7.5 mW cooling and 1.5 mW repump for 133Cs. The number of trapped atoms was \(1.6 \times 10^8\) for 85Rb and \(1.4 \times 10^8\) for 133Cs. The optical depths were 3.71 for 85Rb and 3.45 for 133Cs. The temperature of trapped atoms was $\sim200$ μK for 85Rb and $\sim 200$ μK for 133Cs. Our 3D MOT setup allows full horizontal optical access to the trapped atomic ensembles without spatial interference from the trapping or repump laser beams. Our vacuum system is also quite simple, avoiding much of the complexity typically encountered in similar dual-species systems. However, the red detuning of the cooling laser used for atomic trapping in our system is relatively small, leaving room for further optimization. This system offers a versatile platform for exploring complex phenomena in ultracold atom physics, such as Rydberg molecule formation and interspecies interactions.
  • 加载中
  • Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631

    Google Scholar Pub Med

    Zhang S C, Chen J F, Liu C, Loy M, Wong G K and Du S W 2011 Phys. Rev. Lett. 106 243602

    Google Scholar Pub Med

    Ni K K, Ospelkaus S, De M M, Pe’Er A, Neyenhuis B, Zirbel J, Kotochigova S, Julienne P, Jin D and Ye J 2008 Science 322 231

    Google Scholar Pub Med

    Boyd M M, Ludlow A D, Blatt S, Foreman S M, Ido T, Zelevinsky T and Ye J 2007 Phys. Rev. Lett. 98 083002

    Google Scholar Pub Med

    Tabosa J, Chen G, Hu Z, Lee R and Kimble H 1991 Phys. Rev. Lett. 66 3245

    Google Scholar Pub Med

    Metcalf H J and Straten P 1999 Laser Cooling and Trapping (Berlin: Springer Science & Business Media) pp. 43-63

    Google Scholar Pub Med

    Zhang Y, Liu Q X, Sun J F, Xu Z andWang Y Z 2022 Chin. Phys. B 31 073701

    Google Scholar Pub Med

    Burau J J, Aggarwal P, Mehling K and Ye J 2023 Phys. Rev. Lett. 130 193401

    Google Scholar Pub Med

    Reinschmidt M Fortágh J, Günther A and Volchkov V V 2024 Nat. Commun. 15 8532

    Google Scholar Pub Med

    Tan Z, Lu B, Han C Y and Lee C H 2024 Chin. Phys. B 33 093701

    Google Scholar Pub Med

    Anand S, Bradley C E, White R, Ramesh V, Singh K and Bernien H 2024 Nat. Phys. 20 1744

    Google Scholar Pub Med

    Zeng Y, Xu P, He X, Liu Y, Liu M, Wang J, Papoular D, Shlyapnikov G and Zhan M 2017 Phys. Rev. Lett. 119 160502

    Google Scholar Pub Med

    Cabrera C, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P and Tarruell L 2018 Science 359 301

    Google Scholar Pub Med

    Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R and Nägerl H C 2014 Phys. Rev. Lett. 113 205301

    Google Scholar Pub Med

    Molony P K, Gregory P D, Ji Z H, Lu B, Köppinger M P, Le Sueur C R, Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113 255301

    Google Scholar Pub Med

    Park J M, Will S A, and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302

    Google Scholar Pub Med

    Guo M Y, Zhu B, Lu B, Ye X, Wang F D, Vexiau R, Bouloufa-Maafa N, Quéméner G, Dulieu O and Wang D J 2016 Phys. Rev. Lett. 116 205303

    Google Scholar Pub Med

    Yang H, Wang X Y, Su Z, Cao J, Zhang D C, Rui J, Zhao B, Bai C L, and Pan J W 2022 Nature 602 229

    Google Scholar Pub Med

    Pilch K, Lange A D, Prantner A, Kerner G, Ferlaino F, Nägerl H C and Grimm R 2009 Phys. Rev. A 79 042718

    Google Scholar Pub Med

    Burchianti A, D’Errico C, Rosi S, Simoni A, Modugno M, Fort C and Minardi F 2018 Phys. Rev. A 98 063616

    Google Scholar Pub Med

    Catani J, De Sarlo L, Barontini G, Minardi F and Inguscio M 2008 Phys. Rev. A 77 011603

    Google Scholar Pub Med

    Delehaye M, Laurent S, Ferrier-Barbut I, Jin S, Chevy F and Salomon C 2015 Phys. Rev. Lett. 115 265303

    Google Scholar Pub Med

    Peper M and Deiglmayr J 2021 Phys. Rev. Lett. 126 013001

    Google Scholar Pub Med

    Farouk A M, Beterov I I, Xu P, Bergamini S and Ryabtsev I I 2023 Photonics 10 1280

    Google Scholar Pub Med

    Harris M, Tierney P and Cornish S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 035303

    Google Scholar Pub Med

    Witkowski M, Nagórny B, Munoz-Rodriguez R, Ciuryło R, Żuchowski P S, Bilicki S, Piotrowski M, Morzyński P and Zawada M 2017 Opt. Express 25 3165

    Google Scholar Pub Med

    Isichenko A,Chauhan N, Bose D, Wang J, Kunz P D and Blumenthal D J 2023 Nat. Commun. 14 3080

    Google Scholar Pub Med

    Squires M B 2008 High repetition rate Bose-Einstein condensate production in a compact, transportable vacuum system (Ph.D Dissertation) (Boulder: University of Colorado at Boulder)

    Google Scholar Pub Med

    Meng X R, Su G X and Yuan Z S 2021 Low.Temp.Phys.Lett. 43 0001

    Google Scholar Pub Med

    Metcalf H J and Straten P 1999 Laser Cooling and Trapping (Berlin: Springer Science & Business Media) pp. 86-92

    Google Scholar Pub Med

    Zhang S, Chen J, Liu C, Zhou S, Loy M, Wong J K L and Du S 2012 Rev. Sci. Instrum. 83 073102

    Google Scholar Pub Med

    Wei D, Chen J, Loy M, Wong G K and Du S 2009 Phys. Rev. Lett. 103 093602

    Google Scholar Pub Med

    Chen Y C, Liao Y A, Hsu L and Ite A Y 2001 Phys. Rev. A 64 031401

    Google Scholar Pub Med

    Cho H W, He Y C, Peters T, Chen Y H, Chen H C, Lin S C, Lee Y C and Yu I A 2007 Opt. Express 15 12114

    Google Scholar Pub Med

    TomaszMB, Maria M, Michal Z, Jerzy Z andWojciech G 2022 J. Opt. B: Quantum Semiclass. 4 62

    Google Scholar Pub Med

    Duspayev A, Han X, Viray M, Ma L, Zhao J and Raithel G 2021 Phys. Rev. Res. 3 023114

    Google Scholar Pub Med

    Defenu N, Donner T, Macrí T, Pagano G, Ruffo S and Trombettoni A 2023 Rev. Mod. Phys. 95 035002

    Google Scholar Pub Med

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R and Pfau T 2009 Nature 458 1005

    Google Scholar Pub Med

    Shaffer J, Rittenhouse S and Sadeghpour H 2018 Nat. Commun. 9 1965

    Google Scholar Pub Med

    Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313

    Google Scholar Pub Med

    Browaeys A and Lahaye T 2020 Nat. Phys. 16 132

    Google Scholar Pub Med

    Dobrzyniecki J, Heim P and Tomza M 2024 arXiv:2411.14854 [quantph]

    Google Scholar Pub Med

    Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K and S. Adams C 2022 Nat. Phys. 18 1447

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(122) PDF downloads(2) Cited by(0)

Access History

A Rb-Cs dual-species magneto-optical trap

Fund Project: 

Abstract: We describe a three-dimensional (3D) magneto-optical trap (MOT) capable of simultaneously capturing 85Rb and 133Cs atoms. Unlike conventional setups, our system utilizes two separate laser systems that are combined before entering the vacuum chamber, enabling the simultaneous trapping of two different atomic species. We trapped 85Rb and 133Cs atoms using relatively low total power: 8 mW cooling and 4 mW repump for 85Rb, and 7.5 mW cooling and 1.5 mW repump for 133Cs. The number of trapped atoms was \(1.6 \times 10^8\) for 85Rb and \(1.4 \times 10^8\) for 133Cs. The optical depths were 3.71 for 85Rb and 3.45 for 133Cs. The temperature of trapped atoms was $\sim200$ μK for 85Rb and $\sim 200$ μK for 133Cs. Our 3D MOT setup allows full horizontal optical access to the trapped atomic ensembles without spatial interference from the trapping or repump laser beams. Our vacuum system is also quite simple, avoiding much of the complexity typically encountered in similar dual-species systems. However, the red detuning of the cooling laser used for atomic trapping in our system is relatively small, leaving room for further optimization. This system offers a versatile platform for exploring complex phenomena in ultracold atom physics, such as Rydberg molecule formation and interspecies interactions.

Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return