2025 Volume 34 Issue 5
Article Contents

Hexiang Sun(孙鹤翔), Ding Xing(邢丁), Zhao Dou(窦钊), Jian Li(李剑), Xiubo Chen(陈秀波), and Lixiang Li(李丽香). 2025: Unidirectional quantum private comparison based on quantum private query, Chinese Physics B, 34(5): 050308. doi: 10.1088/1674-1056/adc662
Citation: Hexiang Sun(孙鹤翔), Ding Xing(邢丁), Zhao Dou(窦钊), Jian Li(李剑), Xiubo Chen(陈秀波), and Lixiang Li(李丽香). 2025: Unidirectional quantum private comparison based on quantum private query, Chinese Physics B, 34(5): 050308. doi: 10.1088/1674-1056/adc662

Unidirectional quantum private comparison based on quantum private query

  • Received Date: 13/02/2025
    Accepted Date: 07/03/2025
  • Fund Project:

    Project supported by the National Key Research and Development Program of China (Grant Nos. 2024YFB2906504 and 2024YFB2906500), the National Natural Science Foundation of China (Grant Nos. 62401067 and 62272051), and the 111 Project (Grant No. B21049).

  • PACS: 03.67.Hk

  • Previous bidirectional quantum private comparison (BQPC) protocols cannot meet the requirements in some special application scenarios, where only one party needs to obtain the comparison results without a third party (TP), such as scenarios for authority surveys or healthcare data sharing. In addition to this, the BQPC protocol has the potential of information leakage in multiple comparisons. Therefore, we design a new unidirectional quantum private comparison (UQPC) protocol based on quantum private query (QPQ) protocols with ideal database security and zero failure probability (IDS-ZF), for the reason that they have excellent unidirectionality and security. Concretely, we design a UQPC protocol based on Wei et al.'s work [IEEE Transactions on Computers 67 2 (2017)] and it includes an authentication process to increase the resistance to outside attacks. Moreover, we generalize the protocol and propose a general model that can transform a QPQ protocol with or without the IDS-ZF property into a secure UQPC protocol. Finally, our study shows that protocols using our model are secure, practical, and have the IDS-ZF property.
  • 加载中
  • Yao A C 1982 23rd annual symposium on foundations of computer science (sfcs 1982) pp. 160-164

    Google Scholar Pub Med

    Bennett C H and Brassard G 2014 Theoretical Computer Science 560 7

    Google Scholar Pub Med

    Luo M X 2024 Quantum Networks (Springer)

    Google Scholar Pub Med

    Lo H K 1997 Phys. Rev. A 56 1154

    Google Scholar Pub Med

    Yang Y G and Wen Q Y 2009 J. Phys. A: Math. Theor. 42 055305

    Google Scholar Pub Med

    Chen X B, Su Y, Niu X X and Yang Y X 2014 Quantum Inf. Process. 13 101

    Google Scholar Pub Med

    Lin S, Sun Y, Liu X F and Yao Z Q 2013 Quantum Inf. Process. 12 559

    Google Scholar Pub Med

    Liu W, Wang Y B and Jiang Z T 2011 Opt. Commun. 284 3160

    Google Scholar Pub Med

    Liu W, Wang Y B, Jiang Z T and Cao Y Z 2012 International Journal of Theoretical Physics 51 69

    Google Scholar Pub Med

    Tseng H Y, Lin J and Hwang T 2012 Quantum Inf. Process. 11 373

    Google Scholar Pub Med

    Fan P, Rahman A U, Ji Z, Ji X, Hao Z and Zhang H 2022 Mod. Phys. Lett. A 37 2250026

    Google Scholar Pub Med

    Gong L H, Chen Z Y, Qin L G and Huang J H 2023 Advanced Quantum Technologies 6 2300097

    Google Scholar Pub Med

    Li H H, Gong L H and Zhou N R 2020 Chin. Phys. B 29 110304

    Google Scholar Pub Med

    Gong L H, Li M L, Cao H and Wang B 2024 Laser Physics Letters 21 055209

    Google Scholar Pub Med

    Wang B, Gong L H and Liu S Q 2024 Chin. Phys. B 33 110303

    Google Scholar Pub Med

    Gong L H, Ye Z J, Liu C and Zhou S 2024 Laser Physics Letters 21 035207

    Google Scholar Pub Med

    Liu C, Zhou S, Gong L H and Chen H Y 2023 Quantum Inf. Process. 22 255

    Google Scholar Pub Med

    Giovannetti V, Lloyd S and Maccone L 2008 Phys. Rev. Lett. 100 230502

    Google Scholar Pub Med

    Olejnik L 2011 Phys. Rev. A 84 022313

    Google Scholar Pub Med

    Yu F and Qiu D 2014 Quantum Information and Computation 14 91

    Google Scholar Pub Med

    Jakobi M, Simon C, Gisin N, Bancal J D, Branciard C, Walenta N and Zbinden H 2011 Phys. Rev. A 83 022301

    Google Scholar Pub Med

    Scarani V, Acin A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901

    Google Scholar Pub Med

    Giovannetti V, Lloyd S and Maccone L 2010 IEEE Transactions on Information Theory 56 3465

    Google Scholar Pub Med

    Gao F, Qin S, Huang W and Wen Q 2019 Science China Physics, Mechanics & Astronomy 62 70301

    Google Scholar Pub Med

    Wei C Y, Gao F, Wen Q Y and Wang T Y 2014 Scientific Reports 4 7537

    Google Scholar Pub Med

    Wei C Y, Cai X Q, Liu B,Wang T Y and Gao F 2017 IEEE Transactions on Computers 67 2

    Google Scholar Pub Med

    Sun J, Qian J, Shi C, Zhu D, Zhu Y and Jiang Y 2024 Optical and Quantum Electronics 56 761

    Google Scholar Pub Med

    Qin L, Liu B, Gao F, Huang W, Xu B and Li Y 2024 Physica A 633 129427

    Google Scholar Pub Med

    Jiao Y F, Huang W, Liu B, Shao W Z, Shen Z D and Xu B J 2024 Quantum Inf. Process. 23 133

    Google Scholar Pub Med

    Sasaki T, Yamamoto Y and Koashi M 2014 Nature 509 475

    Google Scholar Pub Med

    Liu B, Xia S, Xiao D, Huang W, Xu B and Li Y 2022 Science China Physics, Mechanics & Astronomy 65 240312

    Google Scholar Pub Med

    Liu B, Gao F, Huang W and Wen Q 2015 Science China Physics, Mechanics & Astronomy 58 100301

    Google Scholar Pub Med

    Yang Y G, Sun S J, Tian J and Xu P 2014 Optik 125 5538

    Google Scholar Pub Med

    Hou M and Wu Y 2024 Entropy 26 682

    Google Scholar Pub Med

    Li J, Che F, Wang Z and Fu A 2023 Entropy 25 1552

    Google Scholar Pub Med

    Gianni J and Qu Z 2021 Journal of Quantum Computing 3 45

    Google Scholar Pub Med

    Basak J 2023 Quantum Inf. Process. 22 276

    Google Scholar Pub Med

    Hu S, Song X and Xu A 2021 Proceedings of the 6th International Conference on Big Data and Computing pp. 104-108

    Google Scholar Pub Med

    Yang Y G, Yang P Z, Xu G B, Jiang D H, Zhou Y H, Shi W M and Li D 2024 International Journal of Theoretical Physics 63 180

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(108) PDF downloads(0) Cited by(0)

Access History

Unidirectional quantum private comparison based on quantum private query

Fund Project: 

Abstract: Previous bidirectional quantum private comparison (BQPC) protocols cannot meet the requirements in some special application scenarios, where only one party needs to obtain the comparison results without a third party (TP), such as scenarios for authority surveys or healthcare data sharing. In addition to this, the BQPC protocol has the potential of information leakage in multiple comparisons. Therefore, we design a new unidirectional quantum private comparison (UQPC) protocol based on quantum private query (QPQ) protocols with ideal database security and zero failure probability (IDS-ZF), for the reason that they have excellent unidirectionality and security. Concretely, we design a UQPC protocol based on Wei et al.'s work [IEEE Transactions on Computers 67 2 (2017)] and it includes an authentication process to increase the resistance to outside attacks. Moreover, we generalize the protocol and propose a general model that can transform a QPQ protocol with or without the IDS-ZF property into a secure UQPC protocol. Finally, our study shows that protocols using our model are secure, practical, and have the IDS-ZF property.

Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return