2025 Volume 34 Issue 5
Article Contents

Xinyun Xiong(熊馨筠), Sichen Jiao(焦思晨), Qinghua Zhang(张庆华), Luyao Wang(王璐瑶), Kun Zhou(周坤), Bowei Cao(曹博维), Xilin Xu(徐熙林), Xiqian Yu(禹习谦), and Hong Li(李泓). 2025: Synergistic bulk and surface engineering via rapid quenching for high-performance Li-rich layered manganese oxide cathodes, Chinese Physics B, 34(5): 058201. doi: 10.1088/1674-1056/adc673
Citation: Xinyun Xiong(熊馨筠), Sichen Jiao(焦思晨), Qinghua Zhang(张庆华), Luyao Wang(王璐瑶), Kun Zhou(周坤), Bowei Cao(曹博维), Xilin Xu(徐熙林), Xiqian Yu(禹习谦), and Hong Li(李泓). 2025: Synergistic bulk and surface engineering via rapid quenching for high-performance Li-rich layered manganese oxide cathodes, Chinese Physics B, 34(5): 058201. doi: 10.1088/1674-1056/adc673

Synergistic bulk and surface engineering via rapid quenching for high-performance Li-rich layered manganese oxide cathodes

  • Received Date: 04/03/2025
    Accepted Date: 19/03/2025
    Available Online: 18/05/2025
  • Fund Project:

    Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB2502200) and the National Natural Science Foundation of China (Grant Nos. 52325207, 22239003, and 22393904).

  • PACS: 82.47.Aa; 82.45.Fk

  • Lithium-rich manganese-based cathodes (LRMs) have garnered significant attention as promising candidates for high-energy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g, achieved through synergistic anionic and cationic redox reactions. However, these materials face challenges including oxygen release-induced structural degradation and consequent capacity fading. To address these issues, strategies such as surface modification and bulk phase engineering have been explored. In this study, we developed a facile and cost-effective quenching approach that simultaneously modifies both surface and bulk characteristics. Multi-scale characterization and computational analysis reveal that rapid cooling partially preserves the high-temperature disordered phase in the bulk structure, thereby enhancing the structural stability. Concurrently, Li$^{+}$/H$^{+}$ exchange at the surface forms a robust rock-salt/spinel passivation layer, effectively suppressing oxygen evolution and mitigating interfacial side reactions. This dual modification strategy demonstrates a synergistic stabilization effect. The enhanced oxygen redox activity coexists with the improved structural integrity, leading to superior electrochemical performance. The optimized cathode delivers an initial discharge capacity approaching 307.14 mAh/g at 0.1 C and remarkable cycling stability with 94.12% capacity retention after 200 cycles at 1 C. This study presents a straightforward and economical strategy for concurrent surface-bulk modification, offering valuable insights for designing high-capacity LRM cathodes with extended cycle life.

  • 加载中
  • Han Q, Yu H, Cai L, Chen L, Li C and Jiang H 2024 Proc. Natl. Acad. Sci. USA 121 e2317282121

    Google Scholar Pub Med

    Wang S, Liang K, Zhao H, Wu M, He J, Wei P, Ding Z, Li J, Huang X and Ren Y 2025 Nat. Commun. 16 1

    Google Scholar Pub Med

    GuoW,WeiW, Zhu H, Hu Y, Jiang H and Li C 2023 eScience 3 100082

    Google Scholar Pub Med

    Zhou X, Hong F, Wang S, Zhao T, Peng J, Zhang B, Fan W, Xing W, Zuo M, Zhang P, Zhou Y, Lv G, Zhong Y, Hua W and Xiang W 2024 eScience 4 100276

    Google Scholar Pub Med

    Assat G and Tarascon J M 2018 Nat. Energy 3 373

    Google Scholar Pub Med

    Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Sauban‘ere M, DoubletML, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G and Tarascon J M 2015 Nat. Mater. 14 230

    Google Scholar Pub Med

    Qian D, Xu B, Chi M and Meng Y S 2014 Phys. Chem. Chem. Phys. 16 14665

    Google Scholar Pub Med

    Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J and Wang C 2013 ACS Nano 7 760

    Google Scholar Pub Med

    Hu E, Yu X, Lin R, Bi X, Lu J, Bak S, Nam K W, Xin H L, Jaye C, Fischer D A, Amine K and Yang X Q 2018 Nat. Energy 3 690

    Google Scholar Pub Med

    McColl K, Coles S W, Zarabadi-Poor P, Morgan B J and Islam M S 2024 Nat. Mater. 23 826

    Google Scholar Pub Med

    Yan P, Zheng J, Tang Z K, Devaraj A, Chen G, Amine K, Zhang J G, Liu L M and Wang C 2019 Nat. Nanotechnol. 14 602

    Google Scholar Pub Med

    Li Z, Cao S, Chen J, Wu L, Chen M, Ding H, Wang R, Guo W, Bai Y, Liu M and Wang X 2024 Small 20 2400641

    Google Scholar Pub Med

    Wei H, Huang Y, Tang L, Yan C, He Z, Mao J, Dai K, Wu X, Jiang J and Zheng J 2021 Nano Energy 88 106288

    Google Scholar Pub Med

    Yang S, Wang P, Wei H, Tang L, Zhang X, He Z, Li Y, Tong H and Zheng J 2019 Nano Energy 63 103889

    Google Scholar Pub Med

    Li S, Yang L, Liu Z, Zhang C, Shen X, Gao Y, Kong Q, Hu Z, Kuo C Y, Lin H J, Chen C T, Yang Y, Ma J, Hu Z,Wang X, Yu R,Wang Z and Chen L 2023 Energy Storage Mater. 55 356

    Google Scholar Pub Med

    Liu S, Liu Z, Shen X, Li W, Gao Y, Banis M N, Li M, Chen K, Zhu L, Yu R, Wang Z, Sun X, Lu G, Kong Q, Bai X and Chen L 2018 Surf. Adv. Energy Mater. 8 1802105

    Google Scholar Pub Med

    Geng K Q, Yang M Q, Meng J X, Zhou L F, Wang Y Q, Dmytro S, Zhang Q, Zhong S W and Ma Q X 2022 Tungsten 4 323

    Google Scholar Pub Med

    Guo W, Zhang C, Zhang Y, Lin L, He W, Xie Q, Sa B, Wang L and Peng D 2021 Adv. Mater. 33 2103173

    Google Scholar Pub Med

    Qiu B, Zhang M, Wu L, Wang J, Xia Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z and Meng Y S 2016 Nat. Commun. 7 12108

    Google Scholar Pub Med

    Yang Y, Zhu Q, Yang J, Liu H, Ren Y, Sui X,Wang P, Sun G andWang Z 2023 Adv. Funct. Mater. 33 2304979

    Google Scholar Pub Med

    Ding X, Luo D, Cui J, Xie H, Ren Q and Lin Z 2020 Angew Chem Int Ed 59 7778

    Google Scholar Pub Med

    Ku L, Cai Y, Ma Y, Zheng H, Liu P, Qiao Z, Xie Q, Wang L and Peng D L 2019 Chem. Eng. J. 370 499

    Google Scholar Pub Med

    Jiang Y, Yu F, Que L, Deng L, Xia Y, Ke W, Han Y and Wang Z 2021 ACS Energy Lett. 6 3836

    Google Scholar Pub Med

    Song J, Ning F, Zuo Y, Li A, Wang H, Zhang K, Yang T, Yang Y, Gao C, Xiao W, Jiang Z, Chen T, Feng G and Xia D 2023 Adv. Mater. 35 2208726

    Google Scholar Pub Med

    Li Z, Li Y, Zhang M, Yin Z, Yin L, Xu S, Zuo C, Qi R, Xue H, Hu J, Cao B, Chu M, Zhao W, Ren Y, Xie L, Ren G and Pan F 2021 Adv. Energy Mater. 11 2101962

    Google Scholar Pub Med

    Zhang C, Wei B, Wang M, Zhang D, Uchiyama T, Liang C, Chen L, Uchimoto Y, Zhang R,Wang P and Wei W 2022 Energy Storage Mater. 46 512

    Google Scholar Pub Med

    Zhang K, Qi J, Song J, Zuo Y, Yang Y, Yang T, Chen T, Liu X, Chen L and Xia D 2022 Adv. Mater. 34 2109564

    Google Scholar Pub Med

    Sun X, Qin C, Zhao B, Jia S, Wang Z, Yang T, Liu X, Pan L, Zheng L, Luo D and Zhang Y 2024 Energy Storage Mater. 70 103559

    Google Scholar Pub Med

    Zhao Y, Liu J,Wang S, Ji R, Xia Q, Ding Z,WeiW, Liu Y,Wang P and Ivey D G 2016 Adv. Funct. Mater. 26 4760

    Google Scholar Pub Med

    Zheng C, Feng J, Zhang D, Zhang D and Li J 2024 ACS Energy Lett. 9 1339

    Google Scholar Pub Med

    Peng Y, Wu L, Li C F, Luo B C, Feng X Y, Hu Z Y, Li Y and Su B L 2023 Electrochimica Acta 454 142390

    Google Scholar Pub Med

    Wu T, Liu X, Zhang X, Lu Y, Wang B, Deng Q, Yang Y, Wang E, Lyu Z, Li Y, Wang Y, Lyu Y, He C, Ren Y, Xu G, Sun X, Amine K and Yu H 2021 Adv. Mater. 33 2001358

    Google Scholar Pub Med

    Wu T, Zhang X, Wang Y, Zhang N, Li H, Guan Y, Xiao D, Liu S and Yu H 2023 Adv. Funct. Mater. 33 2210154

    Google Scholar Pub Med

    Li F, Li J C, Gong M S, Lin Z Z, Chang X M, Dong M H and Hou P Y 2025 Rare Met.

    Google Scholar Pub Med

    Chen Y, Liu Y, Zhang J, Zhu H, Ren Y, Wang W, Zhang Q, Zhang Y, Yuan Q, Chen G X, Gallington L C, Li K, Liu X,Wu J, Liu Q and Chen Y 2022 Energy Storage Mater. 51 756

    Google Scholar Pub Med

    McCalla E, Rowe A W, Brown C R, Hacquebard L R P and Dahn J R 2013 J. Electrochem. Soc. 160 A1134

    Google Scholar Pub Med

    Huang L, Liu L, Wu H, Wang Y, Liu H and Zhang Y 2019 J. Alloys Compd. 775 921

    Google Scholar Pub Med

    Wang L, Xu L, Xue W, Fang Q, Liu H, Liu Y, Zhou K, Li Y, Wang X, Wang X, Yang X, Yu X and Wang X 2024 Nano Energy 121 109241

    Google Scholar Pub Med

    van de Walle A 2009 Calphad 33 266

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15

    Google Scholar Pub Med

    Blöchl P E 1994 Phys. Rev. B 50 17953

    Google Scholar Pub Med

    Sun J, Ruzsinszky A and Perdew J P 2015 Phys. Rev. Lett. 115 036402

    Google Scholar Pub Med

    Zhang Y, Yin C, Qiu B, Chen G, Shang Y and Liu Z 2022 Energy Storage Mater. 53 763

    Google Scholar Pub Med

    Shunmugasundaram R, Senthil Arumugam R and Dahn J R 2015 Loss Chem. Mater. 27 757

    Google Scholar Pub Med

    Liu P, Zhang H, He W, Xiong T, Cheng Y, Xie Q, Ma Y, Zheng H, Wang L, Zhu Z Z, Peng Y, Mai L and Peng D L 2019 J. Am. Chem. Soc. 141 10876

    Google Scholar Pub Med

    Wang N, Chen Y, Yin J, Yan W, Li F and Jin Y 2022 J. Alloys Compd. 900 163549

    Google Scholar Pub Med

    Hao Z, Sun H, Ni Y, Yang G, Yang Z, Hao Z, Wang R, Yang P, Lu Y, Zhao Q, Xie W, Yan Z, Zhang W and Chen J 2024 Adv. Mater. 36 2307617

    Google Scholar Pub Med

    Shunmugasundaram R, Senthil Arumugam R, Harris K J, Goward G R and Dahn J R 2016 Chem. Mater. 28 55

    Google Scholar Pub Med

    Aktekin B, Massel F, Ahmadi M, Valvo M, Hahlin M, Zipprich W, Marzano F, Duda L, Younesi R, Edström K and Brandell D 2020 ACS Appl. Energy Mater. 3 6001

    Google Scholar Pub Med

    McCalla E, Rowe A W, Camardese J and Dahn J R 2013 Chem. Mater. 25 2716

    Google Scholar Pub Med

    Reimers J N, Fuller E W, Rossen E and Dahn J R 1993 J. Electrochem. Soc. 140 3396

    Google Scholar Pub Med

    Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y and Ikuhara Y 2010 Ultramicroscopy 110 903

    Google Scholar Pub Med

    Gou X, Hao Z, Hao Z, Yang G, Yang Z, Zhang X, Yan Z, Zhao Q and Chen J 2022 Adv. Funct. Mater. 32 2112088

    Google Scholar Pub Med

    Zeng L, Liang H, Wang Y, Ying X, Qiu B, Pan J, Zhang Y, Wen W, Wang X, Gu Q, Li J, Shi K, Shen Y, Liu Q and Liu Z 2025 Energy Environ. Sci. 18 284

    Google Scholar Pub Med

    Luo D, Ding X, Fan J, Zhang Z, Liu P, Yang X, Guo J, Sun S and Lin Z 2020 Angewandte Chemie International Edition 59 23061

    Google Scholar Pub Med

    Zhang X, Shi J, Liang J, Yin Y, Zhang J, Yu X and Guo Y 2018 Adv. Mater. 30 1801751

    Google Scholar Pub Med

    Sathiya M, Rousse G, Ramesha K, Laisa C P, Vezin H, Sougrati M T, Doublet M-L, Foix D, Gonbeau D, Walker W, Prakash A S, Ben Hassine M, Dupont L and Tarascon J M 2013 Nat. Mater. 12 827

    Google Scholar Pub Med

    Chen J, Yang Y, Tang Y, Wang Y, Li H, Xiao X, Wang S, Darma M S D, Etter M, Missyul A, Tayal A, Knapp M, Ehrenberg H, Indris S and Hua W 2023 Adv. Funct. Mater. 33 2211515

    Google Scholar Pub Med

    Zhang C, Li Y, Liu Y, Shen X, Hu Z, Chen J M, Lin H J, Chen C T, Kong Q, Hu Y, Gao Y, Haw S C, Wang X, Yu R, Wang Z and Chen L 2024 Nano Energy 121 109254

    Google Scholar Pub Med

    Lin C, Piao Y, Kan Y, Bareñ J, Bloom I, Ren Y, Amine K and Chen Z 2014 ACS Appl. Mater. Interfaces 6 12692

    Google Scholar Pub Med

    Luo K, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edstr öm K, Guo J, Chadwick A V, Duda L C and Bruce P G 2016 Nat. Chem. 8 684

    Google Scholar Pub Med

    Zhou K, Zhang Z, Cao B, Jiao S, Zhu J, Xu X, Chen P, Xiong X, Xu L, Wang Q, Wang X, Yu X and Li H 2025 Nano Energy 135 110639

    Google Scholar Pub Med

    Li H, Fong R, Woo M, Ahmed H, Seo D H, Malik R and Lee J 2022 Joule 6 53

    Google Scholar Pub Med

    Zhang Y, Chen Z, Shi X, Meng C, Das P, Zheng S, Pan F and Wu Z S 2023 Adv. Energy Mater. 13 2203045

    Google Scholar Pub Med

    Wang E, Xiao D, Wu T, Liu X, Zhou Y, Wang B, Lin T, Zhang X and Yu H 2022 Adv. Funct. Mater. 32 2201744

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(147) PDF downloads(0) Cited by(0)

Access History

Synergistic bulk and surface engineering via rapid quenching for high-performance Li-rich layered manganese oxide cathodes

Fund Project: 

Abstract: 

Lithium-rich manganese-based cathodes (LRMs) have garnered significant attention as promising candidates for high-energy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g, achieved through synergistic anionic and cationic redox reactions. However, these materials face challenges including oxygen release-induced structural degradation and consequent capacity fading. To address these issues, strategies such as surface modification and bulk phase engineering have been explored. In this study, we developed a facile and cost-effective quenching approach that simultaneously modifies both surface and bulk characteristics. Multi-scale characterization and computational analysis reveal that rapid cooling partially preserves the high-temperature disordered phase in the bulk structure, thereby enhancing the structural stability. Concurrently, Li$^{+}$/H$^{+}$ exchange at the surface forms a robust rock-salt/spinel passivation layer, effectively suppressing oxygen evolution and mitigating interfacial side reactions. This dual modification strategy demonstrates a synergistic stabilization effect. The enhanced oxygen redox activity coexists with the improved structural integrity, leading to superior electrochemical performance. The optimized cathode delivers an initial discharge capacity approaching 307.14 mAh/g at 0.1 C and remarkable cycling stability with 94.12% capacity retention after 200 cycles at 1 C. This study presents a straightforward and economical strategy for concurrent surface-bulk modification, offering valuable insights for designing high-capacity LRM cathodes with extended cycle life.

Reference (65)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return