2025 Volume 34 Issue 6
Article Contents

Da-Liang Guo(郭达良) and Huan Li(黎欢). 2025: Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2, Chinese Physics B, 34(6): 067102. doi: 10.1088/1674-1056/adc6f6
Citation: Da-Liang Guo(郭达良) and Huan Li(黎欢). 2025: Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2, Chinese Physics B, 34(6): 067102. doi: 10.1088/1674-1056/adc6f6

Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2

  • Received Date: 18/01/2025
    Accepted Date: 23/03/2025
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant No. 12364023) and the Natural Science Foundation of Guangxi Zhuang Autonomous Regin, China (Grant No. 2024GXNSFAA010273).

  • PACS: 71.27.+a; 71.15.Mb; 72.15.Qm; 71.10.-w

  • Dirac node-line (DNL) materials constitute a distinct category of topological semimetals, defined by the linear crossing of valence and conduction bands along one-dimensional lines within the Brillouin zone (BZ), resembling the behavior of Dirac fermions. However, spin-orbit coupling (SOC) and electronic interactions can typically alter these intersections and break the DNLs. In mostly reported cases, DNLs are classified as non-interacting types, which highlights the significant research value in searching for robust interacting DNLs in practical materials. Here, by employing first-principles calculations that combine density functional theory (DFT) with dynamical mean-field theory (DMFT), and leveraging symmetry-based indicator theory, we identify CeAgSb$_2$ as a Dirac semimetal. Our investigation reveals that robust Dirac nodal lines (DNLs) in this Kondo system are driven by Kondo interactions and nonsymmorphic lattice symmetries. Furthermore, our results demonstrate that the properties of these DNLs are substantially modulated by Kondo behavior across varying temperature regimes. The interacting DNLs in CeAgSb$_2$ represents a rare example of Dirac semimetal under electronic correlations, and the peculiar variation of Dirac fermions with temperature provides theoretical reference for future experimental explorations of novel electronic-correlation effects in topological materials.
  • 加载中
  • Pramanik A, Pandeya R P, Vyalikh D V, Generalov A, Moras P, Kundu A K, Sheverdyaeva P M, Carbone C, Joshi B, Thamizhavel A, Ramakrishnan S and Maiti K 2021 Phys. Rev. B 103 155401

    Google Scholar Pub Med

    Sakhya A P, Paulose P L, Thamizhavel A and Maiti K 2021 Phys. Rev. Mater. 5 054201

    Google Scholar Pub Med

    Sakhya A P, Kumar S, Pramanik A, Pandeya R P, Verma R, Singh B, Datta S, Sasmal S, Mondal R, Schwier E F, Shimada K, Thamizhavel A and Maiti K 2022 Phys. Rev. B 106 085132

    Google Scholar Pub Med

    Wu Y, Wang L L, Mun E,Johnson D D, Mou D X, Huang L, Lee Y B, Bud’ko S L, Canfield P C and Kaminski A 2016 Nat. Phys. 12 667

    Google Scholar Pub Med

    Datta S, Ali K, Verma R, Singh B, Dash S P, Thamizhavel A and Maiti K 2023 arXiv: 2311.05278 [cond-mat.str-el]

    Google Scholar Pub Med

    Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan M Z 2014 Nat. Commun. 5 3786

    Google Scholar Pub Med

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B and Cava R J 2014 Phys. Rev. Lett. 113 027603

    Google Scholar Pub Med

    Liu Z K, Zhou B, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Zhang Y, Shen Z X, Fang Z and Dai X 2014 Science 343 864

    Google Scholar Pub Med

    Sun Y, Wu S C and Yan B H 2015 Phys. Rev. B 92 115428

    Google Scholar Pub Med

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613

    Google Scholar Pub Med

    Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E and Bisti F 2015 Nat. Phys. 11 724

    Google Scholar Pub Med

    Soh J R, Jacobsen H, Ouladdiaf B, Ivanov A, Piovano A, Tejsner T, Feng Z, Wang H, Su H, Guo Y, Shi Y and Boothroyd A T 2019 Phys. Rev. B 100 144431

    Google Scholar Pub Med

    Zhang T T, Yilmaz T, Vescovo E, Li H X, Moore R G, Lee H N, Miao H, Murakami S and McGuireMA 2022 npj Comput. Mater. 022 00838

    Google Scholar Pub Med

    Burkov A, Hook M and Balents L 2011 Phys. Rev. B 84 235126

    Google Scholar Pub Med

    Hao Z, Chen W, Wang Y, Li J, Ma X M, Hao Y J, Lu R, Shen Z, Jiang Z, Liu W, Jiang Q, Yang Y, Lei X, Wang L, Fu Y, Zhou L, Huang L, Liu Z, Ye M, Shen D, Mei J, He H, Liu C, Deng K, Liu C, Liu Q and Chen C 2021 Phys. Rev. B 104 115158

    Google Scholar Pub Med

    Hong G H, Wang C W, Chen J J, Cui S T, Yang H F, Liang A J, Liu S, Lv Y Y, Zhou J, Chen Y B, Yao S H, Lu M H, Chen Y F, Wang M X, Yang L X, Liu Z K and Chen Y L 2018 Chin. Phys. B 27 017105

    Google Scholar Pub Med

    Schoop L M, Ali M N, Straér C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S P, Lotsch B V and Ast C R 2015 Nat. Commun. 7 11696

    Google Scholar Pub Med

    Fu B B, Yi C J, Zhang T T, Caputo M, Ma J Z, Gao X, Lv B Q, Kong L Y, Huang Y B, Richard P, Shi M, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T and Ding H 2019 Sci. Adv. 5 6459

    Google Scholar Pub Med

    Chen C, Xu X, Jiang J, Wu S C, Qi Y P, Yang L X, Wang M X, Sun Y, Schröoter N B M, Yang H F, Schoop L M, Lv Y Y, Zhou J, Chen Y B, Yao S H, Lu M H, Chen Y F, Felser C, Yan B H, Liu Z K and Chen Y L 2017 Phys. Rev. B 95 125126

    Google Scholar Pub Med

    Wang Y, Qian Y T, Yang M, Chen H X, Li C, Tan Z Y, Cai Y Q, Zhao W J, Gao S Y, Feng Y, Kumar S, Schwier E F, Zhao L, Weng H, Shi Y, Wang G, Song Y, Huang Y, Shimada K, Xu Z, Zhou X J and Liu G 2021 Phys. Rev. B 103 125131

    Google Scholar Pub Med

    Inada Y, Thamizhavel A, Yamagami H, Takeuchi T, Sawai Y, Ikeda S, Shishido H, Okubo T, Yamada M, Sugiyama K, Nakamura N, Yamamoto T, Kindo K, Ebihara T, Galatanu A, Yamamoto E, Settai R and Onuki Y 2002 Philosophical Magazine B 82 1867

    Google Scholar Pub Med

    Jobiliong E, Brooks J S, Choi E S, Lee H and Fisk Z 2005 Phys. Rev. B 72 104428

    Google Scholar Pub Med

    Patil S, Medicherla V R R, Singh R S, Pandey S K, Sampathkumaran E V and K Maiti 2010 Phys. Rev. B 82 104428

    Google Scholar Pub Med

    Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107

    Google Scholar Pub Med

    Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H and Marks L D 2020 J. Chem. Phys. 152 074101

    Google Scholar Pub Med

    Shim J H, Haule K and Kotliar G 2007 Science 318 1615

    Google Scholar Pub Med

    Nam T S, Kang C J, Ryu D C, Kim J, Kim H, Kim K and Min B I 2019 Phys. Rev. B 99 125115

    Google Scholar Pub Med

    Lu H Y and Huang L 2016 Phys. Rev. B 94 075132

    Google Scholar Pub Med

    Zhu X G, Liu Y, Zhao Y W, Wang Y C, Zhang Y, Lu C, Duan Y, Xie D H, Feng W and Jian D 2020 npj Quantum Mater. 5 47

    Google Scholar Pub Med

    Wang Y C, Xu Y J, Liu Y, Han X J, Zhu X G, Yang Y F, Bi Y, Liu H F and Song H F 2021 Phys. Rev. B 103 165140

    Google Scholar Pub Med

    Chen Q Y, Feng W, Xie D H, Lai X C, Zhu X G and Huang L 2018 Phys. Rev. B 97 155155

    Google Scholar Pub Med

    Shen S W, Qin T, Gao J J, Wen C, Wang J H, Wang W, Li J, Luo X, Lu W J and Sun Y P 2022 Chin. Phys. Lett. 39 077401

    Google Scholar Pub Med

    Xu B, Liu R, Wo H L, Liao Z Y, Yi S H, Li C H, Zhao J, Qiu X G, Yin Z P and Bernhard C 2025 arXiv: 2502.20796 [cond-mat.str-el]

    Google Scholar Pub Med

    Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133

    Google Scholar Pub Med

    Cao C, Zhi G X and Zhu J X 2020 Phys. Rev. Lett. 124 166403

    Google Scholar Pub Med

    Ma H T, Ming X, Zheng X J,Wen J F,Wang Y C, Liu Y and Li H 2023 Phys. Rev. B 107 075124

    Google Scholar Pub Med

    Sologub O, Noel H, Leithe-Jasper A, Rogl P and Bodak O I 1995 J. Solid State Chem. 115 441

    Google Scholar Pub Med

    Thorton M J, Armitage J G M, Tomka G J, Riedi P C, Mitchel R H, Houshiar M, Adroja D T, Rainford B D and Fort D 1998 J. Phys: Condens. Matter 10 9485

    Google Scholar Pub Med

    Myers K D, Bud’ko S L, Fisher I R, Islam Z, Kleinke H, Lacerda A H and Canfield P C 1999 J. Magn. Magn. Mater. 205 27

    Google Scholar Pub Med

    Nam T S, Kim J, Kang C J, Kim K and Min B I 2021 Phys. Rev. B 103 045101

    Google Scholar Pub Med

    Burdin S, Georges A and Grempel D R 2000 Phys. Rev. Lett. 85 1048

    Google Scholar Pub Med

    Rosmus M, Olszowska N, Bukowski Z, Starowicz P, Piekarz P and Ptok A 2022 Materials 15 7168

    Google Scholar Pub Med

    Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803

    Google Scholar Pub Med

    Gao J C, Wu Q S, Persson C and Wang Z J 2021 Comput. Phys. Commun. 261 107760

    Google Scholar Pub Med

    Steglich F 2023 arXiv: 2312.11162 [cond-mat.str-el]

    Google Scholar Pub Med

    Wu H, Hallas A M, Cai X, Huang J, Oh J S, Loganathan V, Weiland A, McCandless G T, Chan J Y, Mo S K, Lu D, Hashimoto M, Denlinger J, Birgeneau R J, Nevidomskyy A H, Li G, Morosan E and Yi M 2022 npj Quantum Mater. 7 31

    Google Scholar Pub Med

    Zhang S K, Xu Y J, Li G J, Wang J S, Zhou Z P and An Y P 2025 arXiv: 2502.13585 [cond-mat.str-el]

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(44) PDF downloads(0) Cited by(0)

Access History

Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2

Fund Project: 

Abstract: Dirac node-line (DNL) materials constitute a distinct category of topological semimetals, defined by the linear crossing of valence and conduction bands along one-dimensional lines within the Brillouin zone (BZ), resembling the behavior of Dirac fermions. However, spin-orbit coupling (SOC) and electronic interactions can typically alter these intersections and break the DNLs. In mostly reported cases, DNLs are classified as non-interacting types, which highlights the significant research value in searching for robust interacting DNLs in practical materials. Here, by employing first-principles calculations that combine density functional theory (DFT) with dynamical mean-field theory (DMFT), and leveraging symmetry-based indicator theory, we identify CeAgSb$_2$ as a Dirac semimetal. Our investigation reveals that robust Dirac nodal lines (DNLs) in this Kondo system are driven by Kondo interactions and nonsymmorphic lattice symmetries. Furthermore, our results demonstrate that the properties of these DNLs are substantially modulated by Kondo behavior across varying temperature regimes. The interacting DNLs in CeAgSb$_2$ represents a rare example of Dirac semimetal under electronic correlations, and the peculiar variation of Dirac fermions with temperature provides theoretical reference for future experimental explorations of novel electronic-correlation effects in topological materials.

Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return