2025 Volume 34 Issue 5
Article Contents

Hua-Xing Xu(许华醒)†, Shao-Hua Wang(王少华), Ya-Qi Song(宋雅琪), Ping Zhang(张平), and Chang-Lei Wang(王昌雷). 2025: Encoding converters for quantum communication networks, Chinese Physics B, 34(5): 050310. doi: 10.1088/1674-1056/adcdeb
Citation: Hua-Xing Xu(许华醒)†, Shao-Hua Wang(王少华), Ya-Qi Song(宋雅琪), Ping Zhang(张平), and Chang-Lei Wang(王昌雷). 2025: Encoding converters for quantum communication networks, Chinese Physics B, 34(5): 050310. doi: 10.1088/1674-1056/adcdeb

Encoding converters for quantum communication networks

  • Received Date: 15/01/2025
    Accepted Date: 01/04/2025
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant No. 62001440).

  • PACS: 03.67.Hk; 03.67.-a

  • Quantum communication networks, such as quantum key distribution (QKD) networks, typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding types. To achieve direct communication between the devices with different quantum encoding types, in this paper, we propose encoding conversion schemes between the polarization bases (rectilinear, diagonal and circular bases) and the time-bin phase bases (two phase bases and time-bin basis) and design the quantum encoding converters. The theoretical analysis of the encoding conversion schemes is given in detail, and the basis correspondence of encoding conversion and the property of bit flip are revealed. The conversion relationship between polarization bases and time-bin phase bases can be easily selected by controlling a phase shifter. Since no optical switches are used in our scheme, the converter can be operated with high speed. The converters can also be modularized, which may be utilized to realize miniaturization in the future.
  • 加载中
  • Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504

    Google Scholar Pub Med

    Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503

    Google Scholar Pub Med

    Wang S, Chen W, Yin Z Q, He D Y, Hui C, Hao P L, Fan Yuan G J, Wang C, Zhang L J, Kuang J, Liu S F, Zhou Z, Wang Y G, Guo G C and Han Z F 2018 Opt. Lett. 43 2030

    Google Scholar Pub Med

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W, Hu X L, Guan J Y, Yu Z W, Xu H, Lin J, Li M J, Chen H, Li H, You L, Wang Z, Wang X B, Zhang Q and Pan J W 2020 Phys. Rev. Lett. 124 070501

    Google Scholar Pub Med

    Wang S, Yin Z Q, He D Y, ChenW,Wang R Q, Ye P, Zhou Y, Fan Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C and Han Z F 2022 Nat. Photon. 16 154

    Google Scholar Pub Med

    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70

    Google Scholar Pub Med

    Ma X S, Herbst T, Scheidl T, Wang D, Kropatschek S, Naylor W, Wittmann B, Mech A, Kofler J, Anisimova E, Makarov V, Jennewein T, Ursin R and Zeilinger A 2012 Nature 489 269

    Google Scholar Pub Med

    Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641

    Google Scholar Pub Med

    Long G L and Liu X S 2002 Phys. Rev. A 65 032302

    Google Scholar Pub Med

    Pan D, Lin Z, Wu J, Zhang H, Sun Z, Ruan D, Yin L and Long G L 2020 Photon. Res. 8 1522

    Google Scholar Pub Med

    Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43

    Google Scholar Pub Med

    Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214

    Google Scholar Pub Med

    Bennett C H and Brassard G 1984 International Conference on Computers, Systems & Signal Processing, December 9 12, 1984, Bangalore, India, p. 175

    Google Scholar Pub Med

    Bennett C H and Brassard G 1989 SIGACT News 20 78

    Google Scholar Pub Med

    Elliott C 2002 New J. Phys. 4 46

    Google Scholar Pub Med

    Elliott C, Colvin A, Pearson D, Pikalo O, Schlafer J and Yeh H 2005 Quantum Information and Computation III, March 28 April 1, 2005, Orlando, Florida, p. 138

    Google Scholar Pub Med

    Dianati M and Alleaume R 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM’07), Jan 2 6, 2007, Guadeloupe, Guadeloupe, p. 13

    Google Scholar Pub Med

    Dianati M, Alléaume R, Gagnaire M and Shen X Sherman 2008 Security and Communication Networks 1 57

    Google Scholar Pub Med

    Peev M, Pacher C, Alléaume R, Barreiro C, et al. 2009 New J. Phys. 11 075001

    Google Scholar Pub Med

    Sasaki M, Fujiwara M, Ishizuka H, et al. 2011 Opt. Express 19 10387

    Google Scholar Pub Med

    Agnesi C, Avesani M, Calderaro L, Stanco A, Foletto G, Zahidy M, Scriminich A, Vedovato F, Vallone G and Villoresi P 2020 Optica 7 284

    Google Scholar Pub Med

    Grünenfelder F, Boaron A, Rusca D, Martin A and Zbinden H 2018 Appl. Phys. Lett. 112 051108

    Google Scholar Pub Med

    Peng C Z, Zhang J, Yang D, GaoWB, Ma H X, Yin H, Zeng H P, Yang T, Wang X B and Pan J W 2007 Phys. Rev. Lett. 98 010505

    Google Scholar Pub Med

    Liu Y, Chen T Y, Wang J, Cai W Q, Wan X, Chen L K, Wang J H, Liu S B, Liang H, Yang L, Peng C Z, Chen K, Chen Z B and Pan J W 2010 Opt. Express 18 8587

    Google Scholar Pub Med

    Tang Z, Liao Z, Xu F, Qi B, Qian L and Lo H K 2014 Phys. Rev. Lett. 112 190503

    Google Scholar Pub Med

    Wang Z X, Xu H X, Li J, Yu H C, Huang J Q, Han H,Wang C L, Zhang P, Yin F F, Xu K, Liu B and Dai Y T 2025 EPJ Quantum Technol. 12 47

    Google Scholar Pub Med

    Muller A, Herzog T, Huttner B, Tittel W, Zbinden H and Gisin N 1997 Appl. Phys. Lett. 70 793

    Google Scholar Pub Med

    Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762

    Google Scholar Pub Med

    Xu H X, Wang S H, Wang C L and Zhang P 2006 Chin. Phys. Lett. 42 010303

    Google Scholar Pub Med

    Tang G Z, Sun S H, Chen H, Li C Y and Liang L M 2016 Chin. Phys. Lett. 33 120301

    Google Scholar Pub Med

    Islam N T, Lim C C W, Cahall C, Kim J and Gauthier D J 2017 Sci. Adv. 3 1701491

    Google Scholar Pub Med

    Roberts G L, Lucamarini M, Dynes J F, Savory S J, Yuan Z L and Shields A J 2017 Laser & Photonics Reviews 11 1700067

    Google Scholar Pub Med

    Boaron A, Korzh B, Houlmann R, Boso G, Rusca D, Gray S, Li M J, Nolan D, Martin A and Zbinden H 2018 Appl. Phys. Lett. 112 171108

    Google Scholar Pub Med

    Lutkenhaus N 2024 (US Patent) 20040151321 [2004 8 5]

    Google Scholar Pub Med

    Tamaki K, Lo H K, Fung C H F and Qi B 2012 Phys. Rev. A 85 042307

    Google Scholar Pub Med

    Bruß D 1998 Phys. Rev. Lett. 81 3018

    Google Scholar Pub Med

    Bennett C H 1992 Phys. Rev. Lett. 68 3121

    Google Scholar Pub Med

    Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(212) PDF downloads(1) Cited by(0)

Access History

Encoding converters for quantum communication networks

Fund Project: 

Abstract: Quantum communication networks, such as quantum key distribution (QKD) networks, typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding types. To achieve direct communication between the devices with different quantum encoding types, in this paper, we propose encoding conversion schemes between the polarization bases (rectilinear, diagonal and circular bases) and the time-bin phase bases (two phase bases and time-bin basis) and design the quantum encoding converters. The theoretical analysis of the encoding conversion schemes is given in detail, and the basis correspondence of encoding conversion and the property of bit flip are revealed. The conversion relationship between polarization bases and time-bin phase bases can be easily selected by controlling a phase shifter. Since no optical switches are used in our scheme, the converter can be operated with high speed. The converters can also be modularized, which may be utilized to realize miniaturization in the future.

Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return