2004 Volume 13 Issue 11
Article Contents

Wang Chun-Ming, Wang Jin-Feng, Wang Chun-Lei, Chen Hong-Cun, Su Wen-Bin, Zang Guo-Zhong, Qi Peng, Zhao Ming-Lei, Ming Bao-Quan. 2004: Effects of barium on the nonlinear electrical characteristics and dielectric properties of SnO2-based varistors, Chinese Physics B, 13(11): 1936-1940.
Citation: Wang Chun-Ming, Wang Jin-Feng, Wang Chun-Lei, Chen Hong-Cun, Su Wen-Bin, Zang Guo-Zhong, Qi Peng, Zhao Ming-Lei, Ming Bao-Quan. 2004: Effects of barium on the nonlinear electrical characteristics and dielectric properties of SnO2-based varistors, Chinese Physics B, 13(11): 1936-1940.

Effects of barium on the nonlinear electrical characteristics and dielectric properties of SnO2-based varistors

  • Available Online: 30/11/2004
  • Fund Project: the Natural Science Foundation of Shandong Province, China (Grant Z2003F04)
  • The effects of barium on electrical and dielectric properties of the SnO2·Co2Oa.Ta2O5 varistor system sintered at 1250℃ for 60min were investigated. It is found that barium significantly improves the nonlinear properties. The breakdown electrical field increases from 378.0 to 2834.5V/mm, relative dielectric constant (at 1kHz) falls from 1206 to 161 and the resistivity (at 1kHz) rises from 60.3 to 1146.5kΩ·cm with an increase of BaCO3 concentration from 0mol%to 1.00mol%. The sample with 1.00mol% barium has the best nonlinear electrical property and the highest nonlinear coefficient (α=29.2). A modified defect barrier model is introduced to illustrate the grain-boundary barrier formation of barium-doped SnO2-based varistors.
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(92) PDF downloads(0) Cited by(0)

Access History

Effects of barium on the nonlinear electrical characteristics and dielectric properties of SnO2-based varistors

Abstract: The effects of barium on electrical and dielectric properties of the SnO2·Co2Oa.Ta2O5 varistor system sintered at 1250℃ for 60min were investigated. It is found that barium significantly improves the nonlinear properties. The breakdown electrical field increases from 378.0 to 2834.5V/mm, relative dielectric constant (at 1kHz) falls from 1206 to 161 and the resistivity (at 1kHz) rises from 60.3 to 1146.5kΩ·cm with an increase of BaCO3 concentration from 0mol%to 1.00mol%. The sample with 1.00mol% barium has the best nonlinear electrical property and the highest nonlinear coefficient (α=29.2). A modified defect barrier model is introduced to illustrate the grain-boundary barrier formation of barium-doped SnO2-based varistors.

Reference (0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return