2024 Volume 33 Issue 8
Article Contents

Chen Dong(董晨), Gui-Qiong Xu(徐桂琼)†, and Lei Meng(孟蕾). 2024: CRB: A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization, Chinese Physics B, 33(8): 088901. doi: 10.1088/1674-1056/ad531f
Citation: Chen Dong(董晨), Gui-Qiong Xu(徐桂琼)†, and Lei Meng(孟蕾). 2024: CRB: A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization, Chinese Physics B, 33(8): 088901. doi: 10.1088/1674-1056/ad531f

CRB: A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization

  • Received Date: 25/02/2024
    Accepted Date: 14/05/2024
  • Fund Project:

    This work was supported by the National Social Science Fund of China (Grant No. 23BGL270).

  • The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors. In order to block the outbreak of rumor, one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor. The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues. Firstly, in order to simulate the dissemination of multiple types of information, we propose a competitive linear threshold model with state transition (CLTST) to describe the spreading process of rumor and anti-rumor in the same network. Subsequently, we put forward a community-based rumor blocking (CRB) algorithm based on influence maximization theory in social networks. Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes, which includes community detection, selection of candidate anti-rumor seeds and generation of anti-rumor seed set. Under the CLTST model, the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance. Experimental results show that the proposed model can better reflect the process of rumor propagation, and review the propagation mechanism of rumor and anti-rumor in online social networks. Moreover, the proposed CRB algorithm has better performance in weakening the rumor dissemination ability, which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread, sensitivity analysis, seeds distribution and running time.
  • 加载中
  • Vosoughi S, Roy D and Aral S 2018 Science 359 1146

    Google Scholar Pub Med

    Bovet A and Makse H A 2019 Nat. Commun. 10 7

    Google Scholar Pub Med

    Dong Y F, Huo L A, Xie X X and Li M 2023 Chin. Phys. B 32 070205

    Google Scholar Pub Med

    Zhan X X, Zhang K Y, Ge L, Huang J M, Zhang Z N, Wei L, Sun G Q, Liu C and Zhang Z K 2023 IEEE Trans. Netw. Sci. Eng. 10 553

    Google Scholar Pub Med

    Vicario M D, Bessi A, Zollo F, Petroni F, Scala A, Caldarelli G, Stanley, H E and Quattrociocchi W 2016 Proc. Natl. Acad. Sci. USA 113 554

    Google Scholar Pub Med

    Alkhalifa R, Kochkina E and Zubiaga A 2023 Inf. Process. Manag. 60 103200

    Google Scholar Pub Med

    Xu G Q and Dong C 2024 Expert Syst. Appl. 235 121154

    Google Scholar Pub Med

    Luvembe A M, Li W M, Li S H, Liu F F and Wu X 2024 Inf. Process. Manag. 61 103653

    Google Scholar Pub Med

    Guo J X, Chen T T and Wu W L 2021 IEEE-ACM Trans. Netw. 29 386

    Google Scholar Pub Med

    Zhang Y H and Zhu J J 2022 Chin. Phys. B 31 060202

    Google Scholar Pub Med

    Meng F Y, Medo M and Buechel B 2022 Inf. Sci. 606 742

    Google Scholar Pub Med

    Xu G Q and Meng L 2023 Chaos Solitons Fractals 168 113155

    Google Scholar Pub Med

    Tong G M, Wu W L, Guo L, Li D Y, Liu C, Liu B and Du D Z 2020 IEEE Trans. Netw. Sci. Eng. 7 845

    Google Scholar Pub Med

    He Q, Lü Y J, Wang X W, Huang M and Cai Y L 2022 IEEE Syst. J. 16 6457

    Google Scholar Pub Med

    Meng L, Xu G Q, Yang P L and Tu D Q 2022 J. Comput. Sci. 60 101591

    Google Scholar Pub Med

    Zhong X J, Yang Y K, Miaao Y Q, Peng Y Q and Liu G Y 2022 Chin. Phys. B 31 040205

    Google Scholar Pub Med

    He X R, Song G J, Chen W and Jiang Q Y 2012 Proceedings of the 2012 SIAM International Conference on Data Mining (Philadelphia: SIAM) p. 463

    Google Scholar Pub Med

    Tan Z H, Wu D K, Gao T H, You I and Sharma V 2019 Future Generation Comput. Syst. 94 293

    Google Scholar Pub Med

    Sun X L, Wang Y G and Cang L Q 2022 Chin. Phys. B 31 050202

    Google Scholar Pub Med

    Manouchehri M A, Helfroush M S and Danyali H 2021 IEEE Trans. Syst. Man. Cybern: Syst. 52 4578

    Google Scholar Pub Med

    Luo X P, Jiang H J, Cheng S S and Li J R 2023 Chin. Phys. B 32 058702

    Google Scholar Pub Med

    Nguyen N P, Yan G H, Thai M T and Eidenbenz S 2012 Proceedings of the 4th Annual ACM Web Science Conference (New York: Association for Computing Machinery) p. 213

    Google Scholar Pub Med

    Wang S Z, Zhao X J, Chen Y, Li Z J, Zhang K and Xia J L 2013 Proceedings of the 27th AAAI Conference on Late-Breaking Developments in the Field of Artificial Intelligence (Singerpore: Association for the Advancement of Artificial Intelligence) p. 134

    Google Scholar Pub Med

    Kimura M, Saito K and Motoda H 2008 Proceedings of the 23th AAAI Conference on Artificial Intelligence (Singerpore: Association for the Advancement of Artificial Intelligence) p. 1175

    Google Scholar Pub Med

    Nepusz T and Vicsek T 2012 Nat. Phys. 8 568

    Google Scholar Pub Med

    Hu X, Xiong X, Wu Y, Shi M J, Wei P and Ma C M 2023 Expert Syst. Appl. 212 118638

    Google Scholar Pub Med

    Zhang Y H and Zhu J J 2022 Chin. Phys. B 31 060202

    Google Scholar Pub Med

    Wu P and Pan L 2017 Comput. Netw. 123 38

    Google Scholar Pub Med

    Pham C V, Dinh H M, Nguyen H D, Dang H T and Hoang H X 2017 Proceedings of the 8th International Symposium on Information and Communication Technology (New York: Association for Computing Machinery) p. 262

    Google Scholar Pub Med

    Zheng J G and Pan L 2018 3rd International Conference on Security of Smart Cities, Industrial Control System and Communications, October 18-19, 2018 Shanghai, China, p. 1

    Google Scholar Pub Med

    Yan R D, Li D Y, Wu W L, Du D Z and Wang Y C 2020 IEEE Trans. Netw. Sci. Eng. 7 1067

    Google Scholar Pub Med

    Ding X J, Li M Y, Tian Y and Jiang M 2021 IEEE Trans. Eng. Manag. 11 1

    Google Scholar Pub Med

    Yao X P, Gu Y, Gu C L and Huang H J 2022 Comput. Commun. 182 41

    Google Scholar Pub Med

    Yang L, Ma Z Y, Li Z W and Giua A 2023 IEEE Trans. Syst. Man. Cybern: Syst. 53 3990

    Google Scholar Pub Med

    Schneider C M, Mihaljev T, Havlin S and Herrmann H J 2011 Phys. Rev. E 84 061911

    Google Scholar Pub Med

    Tong H H, Prakash B A, Eliassi-Rad T, Faloutsos M and Faloutsos C 2012 Proceedings of the 21st International Conference on Information and Knowledge Management (New York: Association for Computing Machinery) p. 245

    Google Scholar Pub Med

    Yao Q P, Zhou C, Xiang L B, Cao Y N and Li G 2015 International Conference on Trustworthy Computing and Services (Berlin: Springer) p. 65

    Google Scholar Pub Med

    Dey P and Roy S 2017 International Conference on Advanced Networks and Telecommunications Systems, December 17-20, 2017, Bhubaneswar, India. p. 1

    Google Scholar Pub Med

    Yan R D, Li Y, Wu W L, Li D Y and Wang Y C 2019 ACM Trans. Knowl. Discov. Data 13 1

    Google Scholar Pub Med

    Xiang F S, Wang J H, Wu Y P, Wang X Y, Chen C and Zhang Y 2024 World Wide Web 27 6

    Google Scholar Pub Med

    Budak C, Agrawal D and Abbadi A 2011 WWW ’11: Proceedings of the 20th international conference on World wide web (New York: Association for Computing Machinery) p. 665

    Google Scholar Pub Med

    Tong G M, Wu W L and Du D Z 2018 IEEE Trans. Comput. Soc. Syst. 5 468

    Google Scholar Pub Med

    Yang L and Li Z W 2019 Inf. Sci. 506 113

    Google Scholar Pub Med

    Xiao Y P, Yang Q F, Sang C Y and Liu Y B 2020 IEEE Trans. Netw. Serv. Manag. 17 1910

    Google Scholar Pub Med

    Li Q, Zeng C, Xu W and Xiao Y P 2022 J. Netw. Comput. Appl. 201 103343

    Google Scholar Pub Med

    Jiang Z Y, Chen X Y, Ma J F and Yu P S 2022 IEEE Trans. Syst. Man. Cybern: Syst. 52 6383

    Google Scholar Pub Med

    He Q, Du H W and Liang Z W 2023 IEEE Trans. Comput. Soc. Syst. 10 2624

    Google Scholar Pub Med

    Xie M, Zhan X X, Liu C and Zhang Z K 2023 Inf. Process. Manag. 60 103161

    Google Scholar Pub Med

    Yang P L, Zhao L J, Lu Z, Zhou L X, Meng F Y and Qian Y 2023 Chaos Solitons Fractals 173 113720

    Google Scholar Pub Med

    Beni H A, Bouyer A, Azimi S, Rouhi A and Arasteh B 2023 Inf. Sci. 640 119105

    Google Scholar Pub Med

    Xie X W, Zhan X X, Zhang Z K and Liu C 2023 Chaos 33 013104

    Google Scholar Pub Med

    Umrawal A K, Quinn C J and Aggarwal V 2023 IEEE Trans. Emerg. Top. Comput. Intell. 7 1253

    Google Scholar Pub Med

    Guo C, Li W M, Liu F F, Zhong K X, Wu X, Zhang Y G and Jin Q 2024 Neurocomputing 564 126936

    Google Scholar Pub Med

    Bozorgi A, Samet S, Kwisthout J and Wareham T 2017 KnowledgeBased Syst. 134 149

    Google Scholar Pub Med

    Wang J and Li K 2021 Chin. Phys. B 30 120518

    Google Scholar Pub Med

    Li W M, Zhou X K, Yang C, Fan Y T, Wang Z and Liu Y X 2021 Inf. Fusion 79 110

    Google Scholar Pub Med

    Banerjee S, Jenamani M and Pratihar D K 2023 Expert Syst. Appl. 125 1

    Google Scholar Pub Med

    Blondel V D, Guillaume J L, Lambiotte R and Lefebvre E 2008 J. Stat. Mech-Theory Exp. P10008

    Google Scholar Pub Med

    Bouyer A, Beni H A, Arasteh B, Aghaee Z and Ghanbarzadeh R 2022 Expert Syst. Appl. 213 118869

    Google Scholar Pub Med

    Dong C, Xu G Q, Meng L and Yang P L 2022 Physica A 603 127797

    Google Scholar Pub Med

    Yan Z J, Xia Y X, Guo L J, Zhu L Z, Liang Y Y and Tu H C 2023 Chin. Phys. B 32 068901

    Google Scholar Pub Med

    Li W M, Guo C, Deng Z B, Liu F F, Wang J J, Guo R Q, Wang C and Jin Q 2023 Expert Syst. Appl. 270 110547

    Google Scholar Pub Med

    Christakis N A and Fowler J H 2013 Stat. Med. 32 556

    Google Scholar Pub Med

    Dong C, Xu G Q, Yang P L and Meng L 2023 Expert Syst. Appl. 212 118702

    Google Scholar Pub Med

    Jiang Q Y, Song G J, Gao C, Wang Y, Si W J and Xie K Q 2011 Proceedings of the AAAI Conference on Artificial Intelligence 25 127

    Google Scholar Pub Med

    Bao Z K, Liu J G and Zhang H F 2017 Phys. Lett. A 381 976

    Google Scholar Pub Med

    Jiang L C, Zhao X, Ge B, Xiao W D and Ruan Y R 2019 Physica A 381 58

    Google Scholar Pub Med

    Samir A M, Rady S and Gharib T F 2021 Physica A 582 126258

    Google Scholar Pub Med

    Brin S and Page L 1998 Comput. Netw. ISDN Syst. 30 107

    Google Scholar Pub Med

    Zhang J X, Chen D B, Dong Q and Zhao Z D 2016 Sci. Rep. 6 27823

    Google Scholar Pub Med

    Liu P F, Li L J, Fang S Y and Yao Y K 2021 Chaos Solitons Fractals 152 111309

    Google Scholar Pub Med

    Guo C, Li W M, Wang J C, Yu X, Liu X, Luvembe A M, Wang C and Jin Q 2024 Knowledge-Based Syst. 291 111580

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(205) PDF downloads(6) Cited by(0)

Access History

CRB: A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization

Fund Project: 

Abstract: The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors. In order to block the outbreak of rumor, one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor. The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues. Firstly, in order to simulate the dissemination of multiple types of information, we propose a competitive linear threshold model with state transition (CLTST) to describe the spreading process of rumor and anti-rumor in the same network. Subsequently, we put forward a community-based rumor blocking (CRB) algorithm based on influence maximization theory in social networks. Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes, which includes community detection, selection of candidate anti-rumor seeds and generation of anti-rumor seed set. Under the CLTST model, the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance. Experimental results show that the proposed model can better reflect the process of rumor propagation, and review the propagation mechanism of rumor and anti-rumor in online social networks. Moreover, the proposed CRB algorithm has better performance in weakening the rumor dissemination ability, which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread, sensitivity analysis, seeds distribution and running time.

Reference (72)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return