2025 Volume 34 Issue 5
Article Contents

Ke-Chao Zhang(张可超), Sheng-Yue Jiang(蒋升跃), and Jing Xiao(肖婧). 2025: SFFSlib: A Python library for optimizing attribute layouts from micro to macro scales in network visualization, Chinese Physics B, 34(5): 058903. doi: 10.1088/1674-1056/adcb98
Citation: Ke-Chao Zhang(张可超), Sheng-Yue Jiang(蒋升跃), and Jing Xiao(肖婧). 2025: SFFSlib: A Python library for optimizing attribute layouts from micro to macro scales in network visualization, Chinese Physics B, 34(5): 058903. doi: 10.1088/1674-1056/adcb98

SFFSlib: A Python library for optimizing attribute layouts from micro to macro scales in network visualization

  • Received Date: 24/12/2024
    Accepted Date: 20/03/2025
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61773091 and 62476045), the LiaoNing Revitalization Talents Program (Grant No. XLYC1807106), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Liaoning (Grant No. LR2016070).

  • PACS: 89.75.Fb; 87.23.Ge; 05.10.-a

  • Complex network modeling characterizes system relationships and structures, while network visualization enables intuitive analysis and interpretation of these patterns. However, existing network visualization tools exhibit significant limitations in representing attributes of complex networks at various scales, particularly failing to provide advanced visual representations of specific nodes and edges, community affiliation attribution, and global scalability. These limitations substantially impede the intuitive analysis and interpretation of complex network patterns through visual representation. To address these limitations, we propose SFFSlib, a multi-scale network visualization framework incorporating novel methods to highlight attribute representation in diverse network scenarios and optimize structural feature visualization. Notably, we have enhanced the visualization of pivotal details at different scales across diverse network scenarios. The visualization algorithms proposed within SFFSlib were applied to real-world datasets and benchmarked against conventional layout algorithms. The experimental results reveal that SFFSlib significantly enhances the clarity of visualizations across different scales, offering a practical solution for the advancement of network attribute representation and the overall enhancement of visualization quality.
  • 加载中
  • Mancoridis S, Mitchell B S and Rorres C 1998 Proceedings of the 6th International Workshop on Program Comprehension, June 26, 1998, Ischia, Italy, p. 45

    Google Scholar Pub Med

    Gao M, Li Z and Li R 2023 Patterns 4 100839

    Google Scholar Pub Med

    Ran Y J, Xu X K and Jia T 2024 PNAS Nexus 3 113

    Google Scholar Pub Med

    Mursa B E M and Andreica A 2024 Swarm and Evolutionary Computation 86 101526

    Google Scholar Pub Med

    Yu Z H, Lu S,Wang D and Li Z W 2021 Information Sciences 580 857

    Google Scholar Pub Med

    Hanson K R and Theis N 2024 Sociological Methodology 54 142

    Google Scholar Pub Med

    Bahadorian M, Alimohammadi H and Mozaffari T 2019 Scientific Reports 9 19831

    Google Scholar Pub Med

    Yu D G, Zhou Y J and Zhang S Y 2024 New J. Phys. 26 013031

    Google Scholar Pub Med

    Joshi A, Kumar A and Kaushik V 2024 Functional Genomics and Network Biology 2nd Edn. (Singapore: Springer), p. 71

    Google Scholar Pub Med

    Yu C, Zhang T, Chen F and Yu Z 2024 PeerJ 12 e18476

    Google Scholar Pub Med

    Becker R A, Eick S G and Wilks A R 1995 IEEE Transactions on Visualization and Computer Graphics 1 16

    Google Scholar Pub Med

    Velitchko F, Alessio A, Markus B, and Silvia M 2024 IEEE Transactions on Visualization and Computer Graphics 30 5847

    Google Scholar Pub Med

    Lyu H, Kureh Y H, Vendrow J and Porter M A 2024 Nat. Commun. 15 224

    Google Scholar Pub Med

    Wang H, Yan H and Rong C 2024 ACM Comput. Surv. 56 1

    Google Scholar Pub Med

    Geipel M M 2007 International Journal of Modern Physics C 18 1537

    Google Scholar Pub Med

    Zaida C R, Anuska F, Sandra M, Luka K, Felix M A 2012 Scientometrics 93 699

    Google Scholar Pub Med

    Fruchterman T M J and Reingold E M 1991 Software: Practice and experience 21 1129

    Google Scholar Pub Med

    Fan X Y 2020 Master’s Projects 23 050502

    Google Scholar Pub Med

    Scalfani V F, Patel V D and Fernandez A M 2022 Journal of Cheminformatics 14 87

    Google Scholar Pub Med

    Maivizhi R, Sendhilkumar S and Mahalakshmi G S 2016 Proceedings of the International Conference on Informatics and Analytics (Pondicherry, India: Association for Computing Machinery) p. 8

    Google Scholar Pub Med

    Abdelsadek Y, Chelghoum K, Herrmann F, Kacem I, and Otjacques B 2018 Information Sciences 424 204

    Google Scholar Pub Med

    Rodrigues J J F, Traina A J M, Faloutsos C and Traina J R C 2006 Proceedings of the Eighth IEEE International Symposium on Multimedia (ISM’06), 2006, p. 227

    Google Scholar Pub Med

    Leskovec J, Huttenlocher D and Kleinberg J 2010 Proceedings of the SIGCHI conference on human factors in computing systems April 10, 2010, Atlanta, Georgia, USA, p. 1361

    Google Scholar Pub Med

    Jacomy M, Venturini T, Heymann S and Bastian M 2014 PloS one 9 e98679

    Google Scholar Pub Med

    Vehlow C, Reinhardt T, Weiskopf D 2013 IEEE Transactions on Visualization and Computer Graphics 19 2486

    Google Scholar Pub Med

    Zhao R Q, Wu Y, Chen X 2017 Journal of Computer-Aided Design & Computer Graphics 29 9 (in Chinese)

    Google Scholar Pub Med

    Wang G J, Chen H R and Zhou R 2023 Applied Sciences 13 12873

    Google Scholar Pub Med

    Crampes M, Plantie M 2014 Advances in Complex Systems 17 1450001

    Google Scholar Pub Med

    Palla G, Derényi I, Farkas I and Vicsek T 2005 Nature 435 814

    Google Scholar Pub Med

    Huang Z H, Wu J X, Zhu W T and Wang Z Y 2021 Physica A 565 125506

    Google Scholar Pub Med

    Rossetti G and Cazabet R 2019 ACM Comput. Surv. 51 37

    Google Scholar Pub Med

    Zhang M N, Xiao J, Xu X K 2023 Complex Systems and Complexity Science 20 10 (in Chinese)

    Google Scholar Pub Med

    Zhou R, Wang G J and Deng H T 2022 Journal Of Computer Science & Technology 39 479 (in Chinese)

    Google Scholar Pub Med

    Zhou X, Huang T L and Liang X 2017 Computer and Modernization 0 1 (in Chinese)

    Google Scholar Pub Med

    Cai M, Luo H, Meng X, Cui Y and Wang W 2023 Information Processing & Management 60 103197

    Google Scholar Pub Med

    ColemanMK and Parker D S 1996 Software: Practice and Experience 26 1415

    Google Scholar Pub Med

    Purchase H 1997 International Symposium on Graph Drawing Kyoto, Japan, p. 248

    Google Scholar Pub Med

    Breiger R L, Boorman S A, and Arabie P 1975 Journal of Mathematical Psychology 12 328

    Google Scholar Pub Med

    Alhajj R and Rokne J 2018 Encyclopedia of Social Network Analysis and Mining (New York: Springer New York) p. 1034

    Google Scholar Pub Med

    Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E, and Dawson S M 2003 Behavioral Ecology and Sociobiology 54 396

    Google Scholar Pub Med

    Zachary W W 1977 Journal of Anthropological Research 33 452

    Google Scholar Pub Med

    Kunegis J 2013 Proceedings of the 22nd International Conference on World Wide Web, May 13, 2013, Rio de Janeiro, Brazil, p. 1343

    Google Scholar Pub Med

    GirvanMand NewmanME J 2002 Proc. Natl. Acad. Sci. USA 99 7821

    Google Scholar Pub Med

    https://snap.stanford.edu/data/index.html

    Google Scholar Pub Med

    De N W, Mrvar A and Batagelj V 2018 Exploratory social network analysis with Pajek: Revised and expanded edition for updated software (Cambridge: Cambridge University Press), p. 46

    Google Scholar Pub Med

    Alès Z, Engelbeen C, Figueiredo R 2023 Informs J. Comput. 36 672

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(54) PDF downloads(0) Cited by(0)

Access History

SFFSlib: A Python library for optimizing attribute layouts from micro to macro scales in network visualization

Fund Project: 

Abstract: Complex network modeling characterizes system relationships and structures, while network visualization enables intuitive analysis and interpretation of these patterns. However, existing network visualization tools exhibit significant limitations in representing attributes of complex networks at various scales, particularly failing to provide advanced visual representations of specific nodes and edges, community affiliation attribution, and global scalability. These limitations substantially impede the intuitive analysis and interpretation of complex network patterns through visual representation. To address these limitations, we propose SFFSlib, a multi-scale network visualization framework incorporating novel methods to highlight attribute representation in diverse network scenarios and optimize structural feature visualization. Notably, we have enhanced the visualization of pivotal details at different scales across diverse network scenarios. The visualization algorithms proposed within SFFSlib were applied to real-world datasets and benchmarked against conventional layout algorithms. The experimental results reveal that SFFSlib significantly enhances the clarity of visualizations across different scales, offering a practical solution for the advancement of network attribute representation and the overall enhancement of visualization quality.

Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return